目 录

序

作者序

第一章 预备知识 ... 1
 § 1 Lie 群和齐性空间 .. 1
 1.1 Lie 群 ... 1
 1.2 齐性空间 ... 7
 § 2 Riemann 流形 ... 10
 § 3 Riemann 联络 ... 17

第二章 对称 Riemann 空间 24
 § 1 对称集合空间 ... 24
 1.1 对称集合空间 .. 24
 1.2 Riemann 对称集合空间 28
 § 2 对称 Riemann 空间 29
 § 3 对称 Riemann 空间的例子 34
 § 4 半单 Lie 代数 ... 43
 4.1 半单 Lie 代数 .. 43
 4.2 实形式 .. 46
 § 5 对称 Riemann 空间的结构 50
 5.1 第一分解定理 .. 50
 5.2 半单型对称 Riemann 空间 55
 § 6 不可约对称 Riemann 空间的分类 59

第三章 对称 Hermite 空间 67
 § 1 复流形 ... 67
 1.1 复流形 .. 67
 1.2 复结构 ... 71
 1.3 Hermite 度量和 Kahler 度量 75
 § 2 齐性复流形 ... 77
 § 3 集合空间上的不变复结构 82
第一章 预备知识

在这一章，我们将不加证明地叙述在这份讲义中常用到的，关于 Lie 群及 Riemann 流形方面的基本概念，以及许多经典结果。

§ 1 Lie 群和齐性空间

1.1. Lie 群

定义：如果集合 G 上存在一个仿紧 C^∞ 的流形结构，又存在一个群结构，使得群的乘法，$(x, y) \mapsto xy$ 是 $G \times G$ 到 G 内的 C^∞ 映射，又取逆运算 $x \mapsto x^{-1}$ 是 G 到 G 的 C^∞ 映射，则 G 称为 Lie 群。

当 G 为实流形时，G 称为实 Lie 群，当 G 为复流形时，G 称为复 Lie 群。

例 1* 取 $G = \mathbb{R}^n$，它是所有 n 维实列向量

$$
\begin{pmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
\end{pmatrix}
$$

构成的 n 维实线性空间；或取 $G = \mathbb{C}^n$，它是所有 n 维复列向量构成的 n 维复线性空间，它在标准的 C^∞ 流形结构以及加法群结构下构成 Lie 群。

例 2 取 $G = \{e^{\theta y}, -\infty < \theta < \infty\}$。它在标准的 C^∞ 流形结构以及复数乘法群结构下构成实 Lie 群。

本书用 \mathbb{R} 记实数域，\mathbb{C} 记复数域。
例8 记 $GL(n, \mathbb{R})$ 为所有 n 阶非奇异方阵构成的集合，
$GL(n, \mathbb{C})$ 为所有 n 阶非复方阵构成的集合。按如下对应
$$(a_{11} \ldots a_{1n}) \leftrightarrow (a_{11}, \ldots, a_{1n}, \ldots, a_{nn}),$$
其中 (a_{11}, \ldots, a_{nn}) 表示 $1 \times n^2$ 矩阵 (a_{11}, \ldots, a_{nn}) 的转置矩阵，所
以是 $n^2 \times 1$ 矩阵。因此 $GL(n, \mathbb{R})$ 是 \mathbb{R}^n 的开子流形，$GL(n, \mathbb{C})$
是 \mathbb{C}^n 的开子流形。于是 $GL(n, \mathbb{R})$ 及 $GL(n, \mathbb{C})$ 在上述 C^∞ 流形
结构以及方阵相乘的群结构下构成 Lie 群，称为一般线性群。

为了建立 Lie 群与 Lie 代数间的联系，下面引进 Lie 代数的概念。

定义 对域 K 上线性空间 \mathfrak{g}，有双线性映射 $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$，记作
$[X, Y]$。它适合条件：对一切 $X, Y, Z \in \mathfrak{g}$，有
$$[X, Y] + [Y, X] = 0,$$
$$[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0$$
(Jacobi 恒等式)，
则 \mathfrak{g} 称为域 K 上的 Lie 代数。当 $K = \mathbb{R}$ 时，则 \mathfrak{g} 称为实 Lie 代数；当 $K = \mathbb{C}$ 时，则 \mathfrak{g} 称为复 Lie 代数。

记 M 为 C^∞ 流形（我们总假设它是仿紧的）。$C^\infty(M)$ 为 M 上
所有实值 C^∞ 函数构成的实结合代数。对 $x \in M$，记 $T_x(M)$ 为点
x 的切空间。M 上向量场 X 是 M 上的映射，它将 M 中任一点
x，对应一个切向量 $X_x \in T_x(M)$，且使 $x \mapsto X_x$ 是 C^∞ 的，又 X
是作用在 $C^\infty(M)$ 上的微分。即 M 上所有向量场构成集合 $\mathfrak{X}(M)$，
它是实线性空间。且任取 $f \in C^\infty(M), X \in \mathfrak{X}(M)$，则定义 $(fX)_x$
$= f(x)X_x, \forall x \in M$，可知 $fX \in \mathfrak{X}(M)$，即 $\mathfrak{X}(M)$ 为 $C^\infty(M)$ 模。
定义 $(Xf)(x) = X_x f, \forall x \in M$，可知 X 为结合代数 $C^\infty(M)$ 上的
线性映射，且任取 $f, g \in C^\infty(M)$，有 $X(fg) = (Xf)g + f(Xg)$。

在线性空间 $\mathfrak{X}(M)$ 中引进换位运算 $[X, Y], \forall X, Y \in \mathfrak{X}(M)$，
它定义为：对 M 中任一点 x 附近的 C^∞ 实函数 f，则 $[X, Y]_x f$
\(X_0(Yf) - Y_0(Xf) \). 易证这时 \(Z(M) \) 成为 Lie 代数。

回到 Lie 群 \(G \)。下面两种 \(C^\infty \) 同胚映射特别重要，它们是：任意取定 \(a \in G \)，可以定义左平移 \(L_a: x \rightarrow ax, \forall x \in G \) 以及右平移 \(R_a: x \rightarrow xa, \forall x \in G \)。\(G \) 上向量场 \(X \) 称为左不变的，如果 \(dL_a(X) = X, \forall a \in G \)。此即 \(dL_a(X) = X \), \(\forall a \in G \); 同样，\(G \) 上向量场 \(X \) 称为右不变的，如果 \(dR_a(X) = X, \forall a \in G \)。此即 \(dR_a(X) = X \), \(\forall a \in G \)。这儿对 \(C^\infty \) 流形 \(M \) 上的 \(C^\infty \) 映射 \(\sigma \)，则 \(d\sigma \)，记它的微分。

定义 Lie 群 \(G \) 上所有左不变向量场构成的集合 \(\mathfrak{g}(\subset \mathfrak{z}(G)) \)，按照 \(\mathfrak{z}(G) \) 的 Lie 代数结构，自然构成一个 Lie 代数，称为 Lie 群 \(G \) 的 Lie 代数，记作 \(\mathfrak{g} = \text{Lie } G \)。

记 \(e \) 为 Lie 群 \(G \) 的单位元素，\(T_e(G) \) 为 \(e \) 点切空间。对 \(G \) 的 Lie 代数 \(\mathfrak{g} = \text{Lie } G \)，则有自然的实线性同构 \(\mathfrak{X} \rightarrow \mathfrak{X}_e, \forall \mathfrak{X} \in \mathfrak{g} \)。于是有 \(\dim \mathfrak{g} = \dim T_e(G) = \dim G \)。在 \(T_e(G) \) 中引进换位运算，使 \(\mathfrak{X} \rightarrow \mathfrak{X}_e, \mathfrak{Y} \rightarrow \mathfrak{Y}_e \)，即定义 \([\mathfrak{X}_e, \mathfrak{Y}_e] = [\mathfrak{X}, \mathfrak{Y}]_e, \forall \mathfrak{X}, \mathfrak{Y} \in \mathfrak{g} \)。于是 \(T_e(G) \) 也是 Lie 代数。

例 4 设 Lie 群 \(G = GL(n, \mathbb{C}) \)，其 Lie 代数 \(\mathfrak{g} = \text{Lie } G \)。由于 \(G \) 是所有 \(n \) 阶复方阵构成的 \(n \times n \) 维复流形 \(\mathbb{C}^n \) 的开子流形，单位元 \(e \) 即单位方阵，而 \(e \) 点的切空间 \(T_e(G) \) 和 \(\mathbb{C}^n \) 可以看作相同。

记 \(\text{gl}(n, \mathbb{C}) \) 为所有 \(n \) 阶复方阵构成的 \(n \times n \) 维复线性空间，在其中按 \([A, B] = AB - BA, \forall A, B \in \text{gl}(n, \mathbb{C}) \) 引进换位运算，则 \(\text{gl}(n, \mathbb{C}) \) 为复 Lie 代数。由上面引进的线性同构 \(\mathfrak{g} \approx T_e(G) \)，所以 \(GL(n, \mathbb{C}) \) 的 Lie 代数 \(\mathfrak{g} \approx \text{gl}(n, \mathbb{C}) \)。今后我们将 \(\text{gl}(n, \mathbb{C}) \) 和 Lie 群 \(GL(n, \mathbb{C}) \) 的 Lie 代数看作相同。

定义 如果 Lie 群 \(G_1 \) 到 \(G_2 \) 内的映射 \(\varphi: G_1 \rightarrow G_2 \) 是流形的 \(C^\infty \) 映射，且是群同态，则 \(\varphi \) 称为 Lie 群 \(G_1 \) 到 \(G_2 \) 的同态。如果 \(\varphi \) 是 Lie 群 \(G_1 \) 到 \(G_2 \) 上的 \(C^\infty \) 映射，且是群同构，则 \(\varphi \) 称为 Lie 群 \(G_1 \) 到 \(G_2 \) 上的同构。

定义 如果 Lie 代数 \(g_1 \) 到 \(g_2 \) 内的线性映射 \(\rho: g_1 \rightarrow g_2 \)，适合 \(\rho([X, Y]) = [\rho(X), \rho(Y)], \forall X, Y \in g_1 \)，则 \(\rho \) 称为 Lie 代数 \(g_1 \)
到 g_2 的同态。特别若 ρ 还是 Lie 代数 g_1 到 g_2 上的线性同构，则 ρ 称为 Lie 代数 g_1 到 g_2 上的同构。

易证 Lie 群同态 $\varphi: G_1 \to G_2$ 诱导了 Lie 代数同态 $d\varphi: g_1 \to g_2$，其中 $g_i = \text{Lie } G_i$, $i = 1, 2$。当 G_1 连通，则 φ 由 $d\varphi$ 唯一决定。

特别，Lie 群 G 的自同构诱导了 Lie 代数 $\mathfrak{g} = \text{Lie } G$ 的自同构。对 Lie 群 G 来说，最重要的自同构是内自同构，它定义为 $A_2: x \to axa^{-1}$，其中 a 为 G 中任一取定的元素。它诱导了 Lie 代数的自同构 dA_2，改记作 $Ad(a)$，即有

$$Ad(a) = dA(a), \ a \in G.$$

定义 Lie 群 G 到 Lie 群 $GL(n, \mathbb{C})$ 内的同态称为 G 的表示。Lie 代数 \mathfrak{g} 到 Lie 代数 $\mathfrak{gl}(n, \mathbb{C})$ 内的同态称为 \mathfrak{g} 的表示。

所以 Lie 群 G 的表示 φ 定义了 Lie 代数 $\mathfrak{g} = \text{Lie } G$ 的表示 $d\varphi$。

设 V 为 n 维实线性空间，V 上所有非线性变换构成的群记作 $GL(V)$。在 V 中取定一组基，则 $GL(V)$ 标准同构于 $GL(n, \mathbb{R})$。用此同构，可以在 $GL(V)$ 中引进 Lie 群结构。易证，这个 Lie 群结构实际上与基底选取无关。

V 上所有线性变换构成线性空间 $\mathfrak{gl}(V)$，在其中引进换位运算 $[A, B] = AB - BA$, $\forall A, B \in \mathfrak{gl}(V)$，于是 $\mathfrak{gl}(V)$ 为 Lie 代数。显然，在 V 中取定一组基后，可证 $\mathfrak{gl}(V)$ 同构于 $\mathfrak{gl}(n, \mathbb{R})$。

Lie 群 $GL(V)$ 的 Lie 代数同构于 $\mathfrak{gl}(V)$。今后习惯上视 $\mathfrak{gl}(V)$ 为 Lie 群 $GL(V)$ 的 Lie 代数。

定义 对 Lie 群 G，由式 (1.1) 定义了 G 的 Lie 代数 \mathfrak{g} 的自同构 $Ad(a)$，$\forall a \in G$。于是 G 到 $\mathfrak{gl}(\mathfrak{g})$ 内的映射 $Ad: a \to Ad(a)$ 是 Lie 群 G 的一个表示，称为 G 的附属表示。

定义 对 Lie 代数 \mathfrak{g}，定义映射 $ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ 为：任取 $X \in \mathfrak{g}$，

$$ad(X)Y = [X, Y], \ \forall Y \in \mathfrak{g}.$$

显然 ad 为 Lie 代数 \mathfrak{g} 的同态映射，所以是 \mathfrak{g} 的一个表示，称为 \mathfrak{g} 的附属表示。

易证对 Lie 群 G 的 Lie 代数 \mathfrak{g}，由 G 的附属表示 Ad，可以
导出 \mathfrak{g} 的附属表示
(1.2) \[ad = d(Ad). \]

上面定义了 Lie 群的同态，从 Lie 群的同态诱导了它们的 Lie 代数的同态。很自然地，对连通 Lie 群 H 和 G，记它们的 Lie 代数分别为 $\mathfrak{h} = \text{Lie } H$, $\mathfrak{g} = \text{Lie } G$. 如果 \mathfrak{h} 到 \mathfrak{g} 的映射 ρ 是 Lie 代数的同态，一般说，它不能给出 Lie 群 H 到 G 内的同态 φ_1, 使此同态 φ_1 诱导的 Lie 代数 \mathfrak{h} 到 \mathfrak{g} 内的同态 $d\varphi_1 = \rho$. 只有当连通 Lie 群 H 是单连通时，则唯一存在一个连通 Lie 群 H 到 G 的同态 φ, 使 $d\varphi = \rho$.

作为上述事实的一个重要的特例，是取 $H = \mathbb{R}$. 于是交换 Lie 群 H 的 Lie 代数也可以取为 $\mathfrak{h} = \mathbb{R}$. 对 Lie 群 G, 记 $\mathfrak{g} = \text{Lie } G$. 任意取定 $X \in \mathfrak{g}$, 则 $t \mapsto tX, t \in \mathbb{R}$ 定义了 Lie 代数 \mathfrak{h} 到 \mathfrak{g} 内的同态. 由于连通 Lie 群 $H = \mathbb{R}$ 单连通，所以唯一存在 Lie 群 $H = \mathbb{R}$ 到 G 内的同态 φ_1, 使 $d\varphi_1: t \mapsto tX$.

$\varphi_1(\mathbb{R})$ 称为 Lie 群 G 的用 X 定义的单参数子群. 通常记 $\varphi_1(t)$ 为 $\exp tX, t \in \mathbb{R}$.

可以证明，如果 Lie 群 G_1 到 G_2 有同态 $\varphi: G_1 \to G_2$, 则对所有 $X \in \mathfrak{g}_1 = \text{Lie } G_1$, 有
(1.3) \[\varphi(\exp tX) = \exp t\varphi(X), \quad t \in \mathbb{R}. \]

定义 Lie 群 $H(\subset G)$ 称为 Lie 群 G 的 Lie 子群，如果恒等映射 $i: H \to G$ 是内射同态，且使其微分 di 也是内射同态.

在下面用这样的符号：对于 Lie 代数 \mathfrak{g} 的两个子集合 \mathfrak{a}, \mathfrak{b}, 则由 $\{ [X, Y] | X \in \mathfrak{a}, Y \in \mathfrak{b}\}$ 生成的子空间记作 $[\mathfrak{a}, \mathfrak{b}]$. 于是有

定义 Lie 代数 \mathfrak{g} 的子空间 \mathfrak{h}, 如果适合 $[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}$, 则称为 \mathfrak{g} 的子代数; 如果适合 $[\mathfrak{h}, \mathfrak{g}] \subset \mathfrak{h}$, 则称为 \mathfrak{g} 的理想.

设 H 为 Lie 群 G 的 Lie 子群，记 $\mathfrak{g} = \text{Lie } G$, $\mathfrak{h} = \text{Lie } H$. 由定义，对恒等映射 $i: H \to G$, 则 $di(h)$ 为 \mathfrak{g} 的子代数. 我们将 Lie 代数 $di(h)$ 和 \mathfrak{h} 看作一样. 这样可以证明：在 Lie 群 G 的所有连通 Lie 子群和 Lie 代数 $\mathfrak{g} = \text{Lie } G$ 的所有子代数间，存在一个自然的一一对应. 而且 G 的 Lie 子群 H 为 G 的正规子群当且仅当...
<table>
<thead>
<tr>
<th>名称</th>
<th>记号</th>
<th>记号</th>
<th>记号</th>
</tr>
</thead>
<tbody>
<tr>
<td>复一般线性群</td>
<td>$GL(n, \mathbb{C})$</td>
<td>$GL(n, \mathbb{R})$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>特殊正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{C})$</td>
<td>$SL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>特殊正交群</td>
<td>$O(n)$</td>
<td>$SL(n, \mathbb{C}) \cap O(n)$</td>
<td>$SL(n, \mathbb{R}) \cap O(n)$</td>
</tr>
<tr>
<td>复正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{C}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
<tr>
<td>实正交群</td>
<td>$SO(n)$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
<td>$SL(n, \mathbb{R}) \cap GL(n, \mathbb{R})$</td>
</tr>
</tbody>
</table>
它对应的子代数 \mathfrak{g} 为 \mathfrak{g} 的理想.

于是，对 Lie 代数 \mathfrak{g}，一般线性群 $GL(\mathfrak{g})$ 的 Lie 代数为 $\mathfrak{gl}(\mathfrak{g})$．

而 \mathfrak{g} 在附属表示 ad 下的像 $ad_{\mathfrak{g}}$ 为 $\mathfrak{gl}(\mathfrak{g})$ 的子代数．因此在 Lie 群 $GL(\mathfrak{g})$ 中存在连通 Lie 子群，使其 Lie 代数即为 $ad_{\mathfrak{g}}$．这个 Lie 子群记作 $Ad(\mathfrak{g})$，称为 Lie 代数 \mathfrak{g} 的附属群．我们知道 Lie 代数 \mathfrak{g} 的附属群 $Ad(\mathfrak{g})$ 中每个元素，都是 Lie 代数 \mathfrak{g} 的自同构．且 $Ad(\mathfrak{g})$

实际上是由 $\{\exp ad(X) \mid \forall X \in \mathfrak{g}\}$ 生成，其中 \exp 定义为

$$
\exp ad(X) = \sum_{k=0}^{\infty} \frac{1}{k!} ad(X)^k,
$$

即 \exp 为线性变换的通常的指数函数．

如果 \mathfrak{g} 是连通 Lie 群 G 的 Lie 代数，则 G 的附属表示 Ad 下的像集 $Ad(G)$ 就是 $Ad(\mathfrak{g})$．

E. Cartan 证明了一个重要的定理：Lie 群的闭子群必为 Lie 子群．用这个定理，可以给出一大批矩阵 Lie 群．实际上，只要在一般线性群 $GL(n, \mathbb{C})$ 中找闭子群即可．

在表 I 中，我们列举出一批 $GL(n, \mathbb{C})$ 中的闭子群，它们通常称为典型群．这是一批极为重要的 Lie 群．

这里 $M_n(\mathbb{C}), M_n(\mathbb{R})$ 分别记复, 实 n 阶方阵构成的线性空间．$I_n, O_n \in M_n(\mathbb{C})$ 分别记单位方阵及零方阵．$Tr \mathfrak{a}, \det \mathfrak{a}$ 分别记迹及行列式，而

$$
J = \begin{pmatrix}
O_m & -I_m \\
I_m & O_m
\end{pmatrix}.
$$

1.2. 齐性空间

记 G 为 Lie 群, H 为 G 的闭子群，记 G/H 为旁集空间

$$
\{xH \mid x \in G\}.
$$

记 $\pi: G \rightarrow G/H$ 为自然映射，定义为 $\pi(g) = gH$, $\forall g \in G$．熟知能在 G/H 中引进 C^∞ 流形结构，使得自然映射 π 为 C^∞ 映射．而且对 G/H 中任一点 xH 附近有一个局部截影 S，即存在点 xH
的一个邻域 \(U \)，及 \(C^\infty \) 映射 \(S: U \to G \)，使得 \(\pi \circ S = id_U \)。而且，
对每一元素 \(a \in G \)，用
\[
\tau_a(\pi(x)) = \pi(ax), \quad \forall x \in G
\]
可以定义一个 \(C^\infty \) 同胚 \(\tau_a: G/H \to G/H \)。

定义 设 \(H \) 为 Lie 群 \(G \) 的闭正规子群，则商集空间 \(G/H \) 是普通
的商群，且关于 \(C^\infty \) 流形结构构成一个 Lie 群，称为 Lie 群 \(G \)
关于闭正规子群的商群。

对 Lie 群 \(G \)，\(G \) 中子集合
\[
C = \{a \in G | xa = ax, \forall x \in G\}
\]
显然构成 \(G \) 的闭正规子群，称为 Lie 群 \(G \) 的中心。

Lie 的理论告诉我们，任给一个 Lie 代数 \(g \)，可以造出一个 Lie
群 \(G \)，它的 Lie 代数和 \(g \) 同构。很自然地要问，同构的 Lie 代数
\(g_1 \) 和 \(g_2 \)，它们决定的 Lie 群间有什么关系？已经知道，任给一个
Lie 代数 \(g \)，能构造出一个连通且单连通的 Lie 群 \(\hat{G} \)，它在同构意
义下唯一。记 \(\hat{G} \) 为 Lie 群 \(G \) 的中心，\(\hat{G} \) 中任意离散正规子群 \(H \)
则商群 \(G/H \) 的 Lie 代数和 \(g \) 同构。反之，对任一 Lie 群 \(G \) ，如果
它的 Lie 代数和 \(g \) 同构，那么在 \(\hat{G} \) 中存在离散正规子群 \(H \)，使 \(G \)
和商群 \(G/H \) 同构。

下面引进齐性流形的概念。记 \(M \) 为 \(C^\infty \) 流形，Lie 群 \(G \) 称为
流形 \(M \) 上的 Lie 变换群，或者称为 Lie 群 \(G \) 作用于 \(M \) 上，如果
存在 \(C^\infty \) 映射 \(\Phi: G \times M \to M \)，使得记
\[
\Phi(a, x) = ax, \quad \forall a \in G, \ x \in M,
\]
则有
\[
a(bx) = (ab)x, \quad \forall a, b \in G, \ x \in M,
\]
且有 \(ax = x \)，其中 \(e \) 为 Lie 群 \(G \) 的单位元素。这时，对每个 \(a \in G \)，
可以引进流形 \(M \) 到 \(M \) 上的 \(C^\infty \) 同胚 \(\tau_a \)，它定义为
\[
\tau_a(x) = ax, \quad \forall x \in M.
\]

流形 \(M \) 中取定一点 \(x \)，则 Lie 群 \(G \) 的子群
\[
H_x = \{ a \in G | ax = x \}
\]
称为 Lie 群 \(G \) 在点 \(x \) 的邻向子群。记 \(F = \bigcap_{x \in M} H_x \)，则 \(F \) 为 Lie 群

* 符号 \(id_A \) 记集合 \(A \) 上的恒等映射。
设 G 的闭正规子群.

如果 $F = \{e\}$，我们说 Lie 群 G 在流形 M 上作用有效。如果 F 为离散子群，我们说 Lie 群 G 在流形 M 上作用几乎是有效的。

可以看出，如果 Lie 群 G 在流形 M 上作用不是有效的，那么商群 G/F 也作用在流形 M 上，且在流形 M 上作用必然有效。

定义 设 Lie 群 G 作用在 \mathcal{C}^ω 流形 M 上。通过 M 中点 x 的轨道为 M 中子集合 $\{ax | a \in G\}$. 如果 G 只有一个轨道，换句话说，如果对 M 中任取两点 x, y, 存在 $a \in G$, 使得 $ax = y$, 则我们称 Lie 群 G 在流形 M 上的作用是可递的。

定义 设 Lie 群 G 作用在 \mathcal{C}^ω 流形 M 上是可递的，则称 M 为 G 的齐性流形，简称流形 M 为齐性空间。

Lie 群 G 模闭子群 H 构成的旁集空间 G/H 是齐性空间。这时 G 作用在 G/H 上有效（几乎有效）当且仅当包含在 H 中 G 的正规子群是 $\{e\}$ (离散子群)。

设流形 M 为 Lie 群 G 的齐性空间。在流形 M 中取定一点 O. 设有 O 的 G 的逆向子群为 H. G 到 M 上有映射

$$a \rightarrow aO,$$

由此映射诱导了全射

$$G/H \rightarrow M,$$

它是 \mathcal{C}^ω 同胚。在这个意义下，齐性流形 M 可以看作是旁集空间。但是这时表达并不唯一，因为 M 在 Lie 群 G 下作用可递，也可能在 G 的 Lie 子群 G_1 下作用也可递。另外，流形 M 中也可以取两点 O, O_1. 使 G_1 关于 O_1 的逆向子群为 H_1, G 关于 O 的逆向子群为 H, 则 M 可以表为旁集空间 G/H, 也可以表为旁集空间 G_1/H_1。

另一方面，任取 $h \in H$, 则 $ho = 0$, 于是诱导了 O 点 M 的切空间 $T_0(M)$ 上的线性变换 $(dh)_{o}$. 显然 $h \rightarrow (dh)_{o}$ 是逆向子群 H 的一个表示，表示空间为 $T_0(M)$，这个表示称为 H 的逆向表示。

下面给出逆向表示在旁集空间中的实现。将齐性空间 M 看作
是旁集空间 G/H，记 $\pi : G \to M$ 为自然映射。取 $^*0 = \pi(e)$。于是映射 π 在 e 的微分 $d\pi_e$ 是切空间 $T_e(G)$ 到 $T_0(M)$ 上的线性映射。由于 Lie 代数 $\mathfrak{g} = \text{Lie } G$ 在 e 依的作成 $T_e(G)$，在这意义下，$d\pi_e$ 可以看作 Lie 代数 \mathfrak{g} 到 $T_0(M)$ 上的线性映射。这时 $d\pi_e$ 的核是 \mathfrak{g} 的子代数 \mathfrak{h}，其中 \mathfrak{h} 为 G 的闭子群 H 对应的 Lie 代数。所以 $d\pi_e$ 诱导了线性同构

$$
T_0(M) \cong \mathfrak{g}/\mathfrak{h}.
$$

在这个同构下，H 在 $T_0(M)$ 上的迷向表示变为 H 在 $\mathfrak{g}/\mathfrak{h}$ 上的表示，它具体描写如下：如果 $h \in H$，则 G 的附属表示 Ad 有性质：$\text{Ad}(h)$ 将 \mathfrak{g} 的子代数 \mathfrak{h} 不动。所以 $\text{Ad}(h)$ 诱导了商空间 $\mathfrak{g}/\mathfrak{h}$ 上的线性自同构，记作 $\text{Ad}_\mathfrak{g}(h), \forall h \in H$。易证 H 在 $T_0(M)$ 上的迷向表示变为 H 在 $\mathfrak{g}/\mathfrak{h}$ 上的表示 $\text{Ad}_\mathfrak{g} : h \to \text{Ad}_\mathfrak{g}(h)$。

表示 $\text{Ad}_\mathfrak{g}$诱导了 Lie 代数 \mathfrak{h} 的表示，记作 $\text{ad}_\mathfrak{h}$。它可以具体定义为：任取 $X \in \mathfrak{h}$，则 $\text{ad}_\mathfrak{h}X$ 将 \mathfrak{h} 不动，所以诱导了 $\mathfrak{g}/\mathfrak{h}$ 上线性变换，记作 $\text{ad}_{\mathfrak{g}/\mathfrak{h}} X$，而 $\text{ad}_{\mathfrak{g}/\mathfrak{h}} : X \to \text{ad}_{\mathfrak{g}/\mathfrak{h}} X, \forall X \in \mathfrak{h}$。

§ 2 Riemann 流形

记 M 为 n 维 C^∞ 流形（我们总假设它是紧致拓扑空间），任取 $x \in M$，则记 $T_x(M)$ 为 M 上点 x 的切空间。

定义 对 M 上每点 x，给定切空间 $T_x(M)$ 上内积 g_x。假设对 M 上任一坐标邻域 U，记局部坐标系为 (x^1, \cdots, x^n)，则函数

$$
g_{ij}(x) = g_x \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^i} \right), \quad x \in U, \quad 1 \leq i, j \leq n
$$

在 U 上是 C^∞ 函数。于是在 U 上记

$$
g = \sum g_{ij} \, dx^i \, dx^j.
$$

可证 g 为流形 M 上的二阶共变张量场，称为 M 上的 Riemann 度量。

具有 Riemann 度量 g 的流形 M 称为 Riemann 流形，记作

* 本书 e 记作群的单位元素。
(M, g).

设(M, g)为 Riemann 流形，对 u, v ∈ T_x(M)，有时记
\[\langle u, v \rangle = g_x(u, v), \quad \|u\| = \sqrt{\langle u, u \rangle}. \]

例 1 取 M = R^n，于是按照标准途径 T_x(M) = R^n，∀x ∈ R^n.
在 R^n 中给出内积 \langle , \rangle，在同构 R^n = T_x(M) 下定义了 T_x(M) 中的内积 g_x，从而可以给出 M = R^n 上 Riemann 度量 g，而 (R^n, g) 称为 n 维 Euclid 空间。

例 2 取 H = \(\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in R^2 \mid b > 0 \right\} \)，则 H 为 R^2 中开子流形。按照标准途径 T_x(H) = R^2，∀x ∈ H。将 T_x(H) 看作是 R^2，定义
\[g_x(u, v) = \frac{\langle u, v \rangle}{b^2}, \quad \forall x = \begin{pmatrix} a \\ b \end{pmatrix} \in H, \]
其中 \(\langle , \rangle \) 为 R^2 中内积。于是在 H 中引进了 Riemann 度量 g，这时 (H, g) 称为 Poincaré 上半平面。

对 Riemann 流形 (M, g)，取流形 M 的子流形 M。因为 T_x(M) 是 T_x(M) 的线性子空间，∀x ∈ M，于是 M 的 Riemann 度量 g 诱导了 M 的 Riemann 度量，从而定义了 Riemann 流形 (M, g)，称为 (M, g) 的 Riemann 子流形。

例 3 对 R^{n+1} 中的单位球 S^n，按照 Euclid 空间 (R^{n+1}, g) 的 Riemann 度量 g，在 S^n 中引进 Riemann 度量 g_1，使 (S^n, g_1) 为 (R^{n+1}, g) 的 Riemann 子流形。

在两个 Riemann 流形 (M_1, g_1), (M_2, g_2) 的拓扑积 M_1 × M_2 上可以自然地引进 Riemann 度量 g_1 × g_2，使 (M_1 × M_2, g_1 × g_2) 为 Riemann 流形。

取 Riemann 流形 (M, g) 及曲线 C: [a, b] → M。假设 C 是逐段 C^1 曲线，则其长度定义为
\[L(C) = \int_{a}^{b} \| C'(t) \| \, dt, \]
其中 C'(t) 为曲线 C 在点 C(t) 的切向量，a ≤ t ≤ b。假设 M 连通，对 M 中任两点 x, y，取
其中 O 遍历联结 x, y 的所有逐段光滑曲线。熟知 d 定义了集合 M 上的距离，且按此距离在 M 中引进拓扑，使 M 为距离空间，这个拓扑和 M 作为 Riemann 流形 (M, g) 的拓扑是一致的。

定义 设 $(M, g), (M', g')$ 都是 Riemann 流形，C^∞ 内射 $\varphi: M \to M'$ 称为等度量映射，如果

$$g_x(u, v) = g'_{\varphi(x)}(d\varphi_x(u), d\varphi_x(v)), \forall u, v \in T_x(M), x \in M.$$

易证当 $\dim M' = \dim M$，则 M 到 M' 上的等度量映射是一个开映射。

显然，Riemann 流形 (M, g) 到自身上的所有等度量映射在连续作用下构成一个群。这个群称为 Riemann 流形 (M, g) 的等度量变换群，记作 $I(M, g)$。

熟知有下面重要定理。

定理 2.1 (Meyer-Steenrod) 在 Riemann 流形 (M, g) 的等度量变换群 $I(M, g)$ 中存在唯一的 Lie 群结构，使得它是 M 上的 Lie 变换群。

现在引进 Riemann 流形 (M, g) 上的标架丛。对每点 $x \in M$，在 $T_x(M)$ 中取出所有标准正交基(即标准正交标架)，它们构成的集合记作 $O_x(M, g)$. 记

$$O(M, g) = \bigcup_{x \in M} O_x(M, g).$$

引进映射 $\pi: O(M, g) \to M$，它定义为：取 $x \in M$，

$$\pi^{-1}(x) = O_x(M, g).$$

另外，设 $\dim M = n$，将正交群 $O(n)$ 按下面定义从右边作用于集合 $O(M, g)$: 任取 $\alpha = (e_1, \cdots, e_n) \in O_x(M, g)$, $a = (a_{ij}) \in O(n)$, 定义

$$\alpha a = \left(\sum_{i=1}^n e_i a_{i1}, \cdots, \sum_{i=1}^n e_i a_{in}\right),$$

则有 $(\alpha a)b = \alpha(ab), \forall a, b \in O(n)$. 记 I_n 为 n 阶单位方阵，则 $\alpha I_n = \alpha$. 熟知，对 $O_x(M, g)$ 中固定元素 α，则 α 关于 $O(n)$ 的轨
道就是 $O_x(M, g)$，即为 $\pi^{-1}(x)$。

在集合 $O(M, g)$ 中可以自然地引进 C^∞ 流形结构，使 π 为 C^∞ 映射，且 Lie 群 $O(n)$ 在 $O(M, g)$ 上的作用是 C^∞ 的。而且，使 $(O(M, g), M, \pi, O(n))$ 是一个 C^∞ 主丛，称为 Riemann 流形 (M, g) 上的正交标架丛（关于纤维丛概念，将在第六章中引进）。

定理 2.2 (Kobayashi) 取定 $\alpha \in O(M, g)$，引进映射 $\iota: I(M, g) \rightarrow O(M, g)$，它定义为

$$\iota(\varphi) = d\varphi(\alpha), \quad \forall \varphi \in I(M, g).$$

则映射 ι 是流形 $I(M, g)$ 到正交标架丛 $O(M, g)$ 内的 C^∞ 嵌入。像集 $\iota(I(M, g))$ 为 C^∞ 流形 $O(M, g)$ 的闭正则子流形。所以有时可以将 $I(M, g)$ 和 $\iota(I(M, g))$ 看作一样，即可视 $I(M, g)$ 为 $O(M, g)$ 的闭正则子流形。

推论 对每一点 $x \in M, I(M, g)$ 的点 x 的逆向子群 $I_x(M, g)$ 是紧 Lie 群。

事实上，易见在上面定理的映射 I 下，$I_x(M, g)$ 同构于紧 Lie 群 $O(n)$ 的闭子群，所以 $I_x(M, g)$ 紧。

现在对上面给出的三个例子，给出等度量变换群。

例 1 对 n 维 Euclid 空间 (\mathbb{R}^n, g)，等度量变换群由 $g = Ox + \alpha$ 构成，其中 $O \in O(n), \alpha \in \mathbb{R}^n$。所以 $I(\mathbb{R}^n, g)$ 同构于半直积 $O(n) \mathbb{R}^n$。

例 2 对 Poincaré 上半平面 (H, g)，可以改写作

$$\{z \in \mathbb{C} | \text{Im} z > 0\}.$$

而 $I(H, g)$ 由下列形式的变换生成，它们是

$$z \rightarrow \frac{az + b}{cz + d}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R}),$$

$$z \rightarrow -\bar{z}.$$

所以 $I(H, g)$ 同构于半直积 $PSL(2, \mathbb{R}) \cdot \mathbb{Z}$，其中 $PSL(2, \mathbb{R})$
例 3 对 \mathbb{R}^{n+1} 中以原点为球心的单位球 (S^n, g), 等度量变换群由 $g = O \varphi$ 构成, 其中 $O \in O(n+1)$. 所以 $I(S^n, g) = O(n+1)$.

上面三个例子, 都有这样的性质: 等度量变换群都是可逆的, 而且每点近似群都同构于 $O(n)$.

定义 对 Riemann 流形 (M, g) 及 Lie 群 G, 设 G 在 M 上作用, 且 $G \subset I(M, g)$, 则 Riemann 度量 g 称为 G 不变度量.

定义 如果 Riemann 流形 (M, g) 的等度量变换群 $I(M, g)$ 在 M 上作用可逆, 则称为齐性 Riemann 流形.

由这两个定义可知齐性 Riemann 流形 (M, g) 同构于具有 $I(M, g)$ 不变度量 g 的旁集空间 $I(M, g)/H$; 反之, 具有 G 不变度量 g 的旁集空间 G/H 是一个齐性 Riemann 流形, 称为 Riemann 旁集空间, 记作 $(G/H, g)$. 下面在 Riemann 旁集空间 $(G/H, g)$ 中讨论 G 不变度量 g 所必须适合的条件.

引理 2.1 旁集空间 G/H 上 G 不变度量和线性空间 g/\mathfrak{h} (其中 $g = \text{Lie } G$, $\mathfrak{h} = \text{Lie } H$) 上适合条件

\[(2.1) \quad Q(A_d_{\mathfrak{g}_0}(h)u, A_d_{\mathfrak{g}_0}(h)v) = Q(u, v), \quad u, v \in g/\mathfrak{h}, \]

$\forall h \in H$ 的内积 Q 间有一个自然的一一对应.

证 设旁集空间 G/H 有 G 不变度量 g. 由于 G 在 G/H 上可逆, 所以对 G/H 中点 $0 = \pi(e) = H$, 则 g 由 g_0 唯一决定. 这里 g_0 为 $T_0(G/H)$ 上内积. 这时, g 的 G 不变性, 即 g_0 的 H 不变性. 此即

\[(2.2) \quad g_0(dh_0(u), dh_0(v)) = g_0(u, v), \quad \forall u, v \in T_0(G/H),\]

其中 $h \rightarrow dh_0$ 为迷向于子群 H 的迷向表示. 已知在同构 $T_0(G/H) \cong g/\mathfrak{h}$ 下, 迷向表示 $h \rightarrow dh_0$ 变为表示 $A_d_{\mathfrak{g}_0}$: $h \rightarrow A_d_{\mathfrak{g}_0}h$, 而内积 g_0 变为内积 Q. 这时, 作为 g/\mathfrak{h} 上的内积 Q, 条件(2.2) 转化为条件 (2.1). 这证明了从旁集空间 G/H 有 G 不变度量 g 导出 g/\mathfrak{h} 上有适合条件 (2.1) 的内积 Q.
反之，任给 \(a/b \) 上适合条件 (2.1) 的内积 \(Q \)，利用同构 \(a/b \cong T_0(G/H) \) 造出 \(T_0(G/H) \) 上适合条件 (2.2) 的内积 \(g_0 \)。从 \(g_0 \) 出发，定义 \(T_x(G/H) \) 上内积 \(g_x \) 如下：

\[
g_x(u, v) = g_0((d\tau_0)^{-1}(u), (d\tau_0)^{-1}(v)), \quad \forall u, v \in T_x(G/H),
\]
其中 \(x = \pi(a) = aH \in G/H, a \in G \)，而 \(\tau_0: yH \to ayH, \forall y \in G \)。
于是 \(\tau_0(0) = aH = x \)。由式 (2.2) 可以证明这样定义的 \(g_x \) 与代表元素 \(a \) 的选取无关。且立即可证

\[
g = \{g_x | x \in G/H\}
\]
是 \(G/H \) 上的 \(G \) 不变 Riemann 度量。这证明了从 \(a/b \) 上适合条件 (2.1) 的内积 \(Q \) 导出了旁集空间 \(G/H \) 上有 \(G \) 不变 Riemann 度量 \(g \)。至此证明了引理。

由引理 2.1 的条件 (2.1) 可以推出

(2.3) \(Q(ad_{a,b}(X)u, v) + Q(u, ad_{a,b}(X)v) = 0, \quad u, v \in a/b, \forall X \in b \)。
显而易见，当 \(H \) 连通时，从 (2.3) 成立可以推出 (2.2) 成立。

由引理 2.1 立即可以推出：当子群 \(H \) 紧，则旁集空间 \(G/H \) 有 \(G \) 不变度量。事实上，由熟知的 Weyl 定理，即对紧 Lie 群 \(H \) 的任一表示 \(\rho: H \to GL(V) \) 其中 \(V \) 为实（或复）表示空间，则在 \(V \) 上有定正对称（定正 Hermite）内积 \(g_0 \)，使得

\[
g_0(\rho(h)u, \rho(h)v) = g_0(u, v), \quad \forall u, v \in V, h \in H.
\]
特别，旁集空间 \(G/H \) 的向量表示 \(h \to \hat{h}_0 \) 有此性质。

为了给出判断旁集空间 \(G/H \) 有 \(G \) 不变度量的更一般形式的条件，可以给出

定义 实或复 Lie 代数 \(g \) 上对称双线性函数

\[
B(X, Y) = \text{Tr}(adXadY), \quad \forall X, Y \in g
\]
称为 Lie 代数 \(g \) 的 Killing 型。

引理 2.2 设 \(h \) 为实 Lie 代数 \(g \) 的子代数，且 \(h \) 中无 \(g \) 的非零理想。设空间 \(g/h \) 上存在适合条件 (2.3) 的内积 \(Q \)，则

a) \(h \) 的 Killing 型 \(B_h(X, Y) = \text{Tr}(adXadY), \forall X, Y \in h \) 半正定负；

b) \(g \) 的 Killing 型 \(B(X, Y) = \text{Tr}(adXadY), \forall X, Y \in g \)
在 \mathfrak{h} 上定负.

证 对 $\mathfrak{g}/\mathfrak{h}$ 上内积 Q, 存在标准正交基. 于是关于这组基, 条件 (2.3) 等价于 $ad_{\mathfrak{g},\mathfrak{h}}(X)$ 表为斜对称方阵. 所以 $ad_{\mathfrak{g},\mathfrak{h}}(X)$ 相似于对角形, 对角元素纯虚. 此即记

$$A(X, Y) = \text{Tr} ad_{\mathfrak{g}}(X) ad_{\mathfrak{g}}(Y), \quad X, Y \in \mathfrak{h},$$

则 $A(X, X) \leq 0$, 且等号成立当且仅当 $ad_{\mathfrak{g}}(X) = 0$. 另一方面, $X \rightarrow ad_{\mathfrak{g}}(X), \quad \forall X \in \mathfrak{h}$ 为 \mathfrak{g} 的表示, 核为 \mathfrak{h} 中 \mathfrak{g} 的理想, 所以为零, 即由 $ad_{\mathfrak{g}}(X) = 0$ 可以推出 $X = 0$. 这证明了 $A(X, Y)$ 在 \mathfrak{h} 上定负.

显然

$$A((ad_{\mathfrak{g}} Z) X, Y) + A(X, (ad_{\mathfrak{g}} Z) Y) = 0, \quad \forall X, Y, Z \in \mathfrak{h},$$

由 $-A$ 在 \mathfrak{h} 上定正, 所以在 \mathfrak{g} 中存在一组标准正交基, 从而 $ad_{\mathfrak{g}} Z, \quad \forall Z \in \mathfrak{h}$ 在这组基下表为斜对称方阵. 同理证明了 B_0 半定负, 即 a) 成立.

今 $B(X, X) = B_0(X, X) + A(X, X), \quad \forall X \in \mathfrak{h}.$

由 B_0 半定负及 A 定负, 所以立即证明 B 在 \mathfrak{h} 上定负, 即 b) 成立.

引理证完.

命题 2.1 设 Lie 群 G 在旁集空间 G/H 上作用有效, 则 G/H 有 G 不变度量当且仅当在 $\mathfrak{g} = \text{Lie } G$ 上存在内积 F, 使得对 \mathfrak{g} 上 G 的附属表示 Ad, 有

$$F(Ad(h) X, Ad(h) Y) = F(X, Y), \quad X, Y \in \mathfrak{g},$$

对一切 $h \in H$ 成立.

证 先证必要性. 由引理 2.1, G/H 上的 G 不变度量 g 诱导了适合条件 (2.1) 的 $\mathfrak{g}/\mathfrak{h}$ 上内积 Q. 今对自然映射 $\pi: \mathfrak{g} \rightarrow \mathfrak{g}/\mathfrak{h}$, 显然有

$$\pi \circ Ad(h) = Ad_{\mathfrak{g},\mathfrak{h}}(h) \circ \pi, \quad \forall h \in H.$$

在 \mathfrak{g} 上引进对称双线性函数

$$Q^*(X, Y) = Q(\pi(X), \pi(Y)), \quad \forall X, Y \in \mathfrak{g},$$

则有 $Q^*(Ad(h) X, Ad(h) Y) = Q^*(X, Y), \quad \forall X, Y \in \mathfrak{g}$ 对一切 $h \in H$ 成立.
今显然有
\[B(\text{Ad}(a)X, \text{Ad}(a)Y) = B(X, Y), \quad \forall X, Y \in \mathfrak{g}, \ a \in G. \]
由于 \(G \) 在 \(G/H \) 上作用有效，即 \(H \) 中没有 \(\neq e \) 的 \(G \) 的正规子群，
所以 \(\mathfrak{h} \) 中没有 \(\mathfrak{g} \) 的非零理想。由引理 2.2，所以 \(B \) 在 \(\mathfrak{h} \) 上定负。
今 \(Q \) 在 \(\mathfrak{g}/\mathfrak{h} \) 上定正，所以 \(Q^* \) 半定正，而核为 \(\mathfrak{h} \)。然而 \(-B\) 在 \(\mathfrak{h} \) 上定正，所以存在正实常数 \(C \)，使
\[F(X, Y) = CQ^*(X, Y) - B(X, Y), \quad \forall X, Y \in \mathfrak{g} \]
在 \(\mathfrak{g} \) 上定正，即 \(F \) 为 \(\mathfrak{g} \) 上内积。显然 \(F \) 适合条件 (2.4)，这证明了
必要性。
再证充分性，设 \(\mathfrak{g} \) 上有适合条件 (2.4) 的内积 \(F \)，记 \(\mathfrak{h} = \text{Lie} H \)，
\(\mathfrak{h} \) 关于 \(F \) 的正交补为 \(m \)，则 \(\mathfrak{g} \) 分解为空间直接和 \(\mathfrak{g} = \mathfrak{h} + m \)。今显然
\(\text{Ad}(H)\mathfrak{h} \subset \mathfrak{h} \)，由条件 (2.4)，有 \(\text{Ad}(H)m \subset m \)。今自然映射 \(\pi: \mathfrak{g} \to \mathfrak{g}/\mathfrak{h} \) 诱导了线性同构 \(m \cong \mathfrak{g}/\mathfrak{h} \)。将 \(F \) 在 \(m \) 上的限制 \(F|m \) 映为
\(\mathfrak{g}/\mathfrak{h} \) 上内积 \(Q \)。这时条件 (2.4) 变为 \(Q \) 合适的条件 (2.1)。由引理
2.1，证明了 \(G/H \) 上有 \(G \) 不变度量，充分性证完，命题证毕。

§ 3 Riemann 联络

为了第二章的需要，在这里引进联络，并叙述一些基本性质。
关于联络理论，请参考 Kobayashi-Nomizu [13], Vol 1.

在这一节，\(M \) 记连通 \(C^\infty \) 流形，\(C^\infty(M) \) 为 \(M \) 上所有 \(C^\infty \) 函数
构成之交换环，\(\mathfrak{x}(M) \) 为 \(M \) 上所有向量场构成之 Lie 代数。显然，
\(\mathfrak{x}(M) \) 是 \(C^\infty(M) \) 模。

定义 流形 \(M \) 上的联络 \(\nabla \) 是 \(\mathfrak{x}(M) \times \mathfrak{x}(M) \) 到 \(\mathfrak{x}(M) \) 的双线
性映射。记此映射为 \(\nabla: (X, Y) \to \nabla_X Y \)，则有
(\(i \)) \(\nabla_X Y = f \nabla_X Y \),
(\(ii \)) \(\nabla_X (fY) = (Xf)Y + f \nabla_X Y \),
\(\forall X, Y \in \mathfrak{x}(M), f \in C^\infty(M) \)。\(\nabla_X Y \) 称为关于此联络的 \(Y \) 对于 \(X \)
的共变微分。

例 1 取 \(M = \mathbb{R}^n \)，\(\mathbb{R}^n \) 中点的坐标为 \((x^1, \ldots, x^n) \)。任取 \(X, Y \)
\[X = \sum_{i=1}^{n} a_i \frac{\partial}{\partial x^i}, \quad Y = \sum_{i=1}^{n} b_i \frac{\partial}{\partial x^i}, \]

其中 \(a_i, b_i \in \mathcal{C}^\infty(\mathbb{R}^n) \)。定义

\[\nabla_X Y = \sum_{i=1}^{n} (X b_i) \frac{\partial}{\partial x^i}, \]

可以验证 \((X, Y) \rightarrow \nabla_X Y\) 是 \(\mathbb{R}^n\) 的联络。

流形 \(M\) 上任取向量场 \(Y \in \mathfrak{X}(M)\)。对 \(M\) 中开子集 \(U\)，记 \(Y|U\) 为 \(Y\) 在 \(U\) 的限制。显然，\(U\) 为 \(M\) 的子流形，而 \(Y|U\) 为 \(U\) 上向量场。

引理 3.1 任取 \(X, Y \in \mathfrak{X}(M)\)，设对 \(M\) 中开子集 \(U\)，\(Y|U = 0\)。则对 \(M\) 上联络 \(\nabla\)，有 \(\nabla_X Y|U = \nabla_Y X|U = 0\)。

证 任取 \(x \in U\)，熟知存在 \(x\) 点的开邻域 \(V_x\)，使 \(\tilde{V}_x \subset U\)，且存在 \(f \in \mathcal{C}^\infty(M)\)，使 \(f|V_x = 0, f|(M - U) = 1\)。由 \(Y|U = 0\) 可知 \(fY = Y\)。今 \(\nabla_X Y = \nabla_X (fY) = (Xf)Y + f \nabla_X Y\)。因此 \(\nabla_X Y|V_x = 0\)。这证明了对 \(U\) 中每点 \(x\)，\(\nabla_X Y|_x = 0\)，所以 \(\nabla_X Y|U = 0\)。再 \(\nabla_Y X = \nabla_{fY} X = f \nabla_Y X\)，同理可证 \(\nabla_Y X|U = 0\)。引理证完。

今对流形 \(M\) 的开子流形 \(U\)。任取 \(U\) 上向量场 \(\tilde{X}\)。对每一点 \(x \in U\)，存在点 \(x\) 的开邻域 \(V_x\)，使 \(\tilde{V}_x \subset U\)。且存在 \(f \in \mathcal{C}^\infty(M)\)，使 \(f|V_x = 0, f|(M - U) = 0\)。可以定义 \(X \in \mathfrak{X}(M)\) 如下，使在 \(U\) 上，\(X = f\tilde{X}\)，在 \(M - U\) 上，\(X = 0\)。因此 \(X|V_x = \tilde{X}|V_x\)。

设流形 \(M\) 有联络 \(\nabla\)。今任取 \(\tilde{X}, \tilde{Y}\) 为开子流形 \(U\) 上向量场，则存在 \(M\) 上向量场 \(X, Y\)，使 \(X|V_x = \tilde{X}|V_x, Y|V_x = \tilde{Y}|V_x\)。\(M\) 上向量场 \(\nabla_X Y\) 限制在 \(V_x\) 上，为 \(V_x\) 上向量场。定义

\[\nabla_{\tilde{X}} \tilde{Y} = \nabla_X Y|V_x. \]

由引理 3.1，今 \(V_x\) 为 \(U\) 中任一点 \(x\) 的开邻域，使 \(\tilde{V}_x \subset U\)。当 \(x\) 遍历 \(U\)，便定义了 \(U\) 上向量场 \(\nabla_{\tilde{X}} \tilde{Y}\)。易证 \((\tilde{X}, \tilde{Y}) \rightarrow \nabla_{\tilde{X}} \tilde{Y}\) 为 \(U\) 上联络。

上面叙述了从流形 \(M\) 的联络 \(\nabla\)，诱导出开子流形 \(U\) 的联络。设 \(U\) 为流形 \(M\) 的局部坐标邻域，点坐标记为 \((x^1, \cdots, x^n)\)。记

...
\[\nabla_{\frac{\partial}{\partial x^i}} \left(\frac{\partial}{\partial x^j} \right) = \sum_{k=1}^n \Gamma^k_{ij} \frac{\partial}{\partial x^k}, \quad 1 \leq i, j \leq n, \]

其中 \(\Gamma^k_{ij} \in \mathcal{C}^\infty(U) \)。由联络定义可知，对 \(U \) 上任两向量场

\[X = \sum_{i=1}^n a_i \frac{\partial}{\partial x^i}, \quad Y = \sum_{i=1}^n b_i \frac{\partial}{\partial x^i}, \]

其中 \(a_i, b_i \in \mathcal{C}^\infty(U), 1 \leq i \leq n \)，则有

\[\nabla_X Y = \sum_{i=1}^n \left(\sum_{j=1}^n a_i \left(\frac{\partial b_j}{\partial x^i} + \sum_{j=1}^n \Gamma^k_{ij} b_j \right) \right) \frac{\partial}{\partial x^k}. \]

（3.1）由此可以推出，如果对点 \(x \in U \)，有 \(X_x = 0 \)，则 \((\nabla_X Y)_x = 0 \)。于是对点 \(x \) 的切向量 \(u \in T_x(M) \)，我们能定义 \(\nabla_X Y \in T_x(M) \)。事实上，任取 \(X \in \mathfrak{X}(U) \)，使得 \(X_x = u \)，则 \((\nabla_X Y)_x \in T_x(M) \)。所以定义 \(\nabla_X Y = (\nabla_X Y)_x \) 就行。这里需要证明定义与 \(X \) 的选取无关。事实上，如果 \(X, \overline{X} \in \mathfrak{X}(U) \)，\(X_x = \overline{X}_x = u \)，则 \((X - \overline{X})_x = 0 \)，所以

\[(\nabla_X Y)_x - (\nabla_{\overline{X}} Y)_x = (\nabla_{X - \overline{X}} Y)_x = 0, \]

因此 \(\nabla_X Y \) 有意义。

取 \(X, Y \in \mathfrak{X}(M), x \in M \)。取 \(X \) 的积分曲线 \(\gamma: (-s, s) \to M, s > 0 \)，使得 \(\gamma(0) = x \)。由积分曲线的定义，曲线 \(\gamma \) 在 \(t \) 的切向量 \(\gamma'(t) = X_{\gamma(t)} \)。于是记 \(y = \gamma(t) \)，则

\[\sum_{i=1}^n a^i(y) \frac{\partial b^k(y)}{\partial y^i} \bigg|_{y=x} = \frac{db^k(\gamma(t))}{dt} \bigg|_{t=0}. \]

于是，由（3.1），\(\nabla_X Y_x \) 由 \(X_x \) 及 \(Y_{\gamma(t)} \) 决定。

反之，对 \(M \) 上任一 \(\mathcal{C}^\infty \) 曲线 \(\gamma: [a, b] \to M \)。取沿着 \(\gamma(t) \) 的向量场 \(X(\gamma(t)) \in T_{\gamma(t)}(M) \)，记作

\[X(\gamma(t)) = \sum_{i=1}^n b^i(t) \left(\frac{\partial}{\partial x^i} \right)_{x=\gamma(t)}. \]

又

\[\gamma'(t) = \sum_{i=1}^n a^i(t) \left(\frac{\partial}{\partial x^i} \right)_{x=\gamma(t)}. \]

这里 \(a^i(t), b^i(t), t \in [a, b] \) 为 \(t \) 的 \(\mathcal{C}^\infty \) 函数。于是可以唯一地按照式（3.1）定义沿着曲线 \(\gamma \) 的向量场 \(\nabla_{\gamma(t)} X, a \leq t \leq b \)。

定义 设 \(M \) 是具有联络 \(\nabla \) 的 \(\mathcal{C}^\infty \) 流形，\(J \) 是 \(\mathbb{R} \) 中区间，\(\gamma: J \to M \) 是 \(\mathcal{C}^\infty \) 曲线。沿着 \(\gamma \) 的向量场 \(\{ X(\gamma(t)) \} \) 称为沿着 \(\gamma \) 平行，如果对一切 \(t \in J \)，\(\gamma'_{\gamma(t)} X = 0 \)。
设曲线 $C(t)$ 落在局部坐标邻域 U 中。U 中点坐标为 (x^1, \cdots, x^n)。记 $C_i(t) = x^i(C(t))$, $X(C(t)) = \sum_{i=1}^{n} b^i(t) \left(\frac{\partial}{\partial x^i} \right)_{x=a(t)}$。则

\{X(C(t))\} 沿着曲线 C 平行当且仅当

\begin{equation}
(3.2) \quad \frac{d^2 x^k}{dt^2} + \sum_{i,j=1}^{n} I_{ij}^k(C(t)) C_i(t) b^j(t) = 0, \quad k = 1, 2, \cdots, n.
\end{equation}

由 Pfaff 方程理论可知，设 $[a, b] \subset J$，则对任一 $u \in T_{a(a)}(M)$，存在且仅存在一个沿着 C 的平行向量场 $\{X(C(t))\}$，使得 $X(C(a)) = u$。而且 $u \rightarrow X(C(b))$ 定义了线性同构 P_0:

$$T_{a(a)}(M) \rightarrow T_{a(b)}(M).$$

映射 P_0 称为沿着 C 的平行移动。

下面命题清楚地给出了用平行移动描写的变化微分的意义。

命题 3.1 设 M 为具有联络 ∇ 的 C^∞ 流形。取 $u \in T_x(M)$，取 C^∞ 曲线 $C: J \rightarrow M$，使得 $C(0) = x$, $C'(0) = u$。则对沿着 C 的向量场 $\{X(C(t))\}$，有

$$\nabla_u X = \left[\frac{d}{dt} P_t^{-1} X(a(t)) \right]_{t=0},$$

其中 P_t 为平行移动 $T_x(M) \rightarrow T_{a(t)}(M)$，$\frac{d}{dt}$ 是 $T_x(M)$ 值函数关于 t 的微分。

证明见 Kobayashi-Nomizu[13], Vol. 1.

命题 3.1 建议我们引进关于 M 上张量场 T 用切向量 $u \in T_x(M)$ 所作的共变微分 $\nabla_u T$，它定义为

$$\nabla_u T = \left[\frac{d}{dt} P_t^{-1} T(a(t)) \right]_{t=0},$$

其中 P_t 是由切空间间的平行移动 $P_t: T_x(M) \rightarrow T_{a(t)}(M)$ 扩充为 $T_x(M)$ 上张量空间到 $T_{a(t)}(M)$ 上张量空间间的线性同构。

一般，可以引进 M 上张量场 T 用 M 上向量场 X 所作的共变微分 $\nabla_X T$，它定义为

$$\left(\nabla_X T \right)_x = \nabla_{X_x} T, \quad \forall x \in M.$$
重要的是 Riemann 流形上的联络。

定理 3.1 在 Riemann 流形 \((M, g)\) 上存在且只存在一个适合下列条件的联络 \(\nabla\):

(i) \(\nabla_X Y - \nabla_Y X = [X, Y]\),

(ii) \(X(g(Y, Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z), \quad \forall X, Y, Z \in \mathfrak{X}(M)\).

这个联络称为 Riemann 流形 \((M, g)\) 的 Riemann 联络。

视 \(g\) 为 \((2, 0)\) 型张量，则 Riemann 联络的条件 (ii) 等价于 \(\nabla_X g = 0\)。换句话说，已知 Riemann 流形 \(M\) 的 Riemann 度量 \(g\) 定义了 \(M\) 上每点 \(x\) 的切空间中的内积 \(g_x\)。条件 (ii) 等价于沿着任意一条 \(C^\infty\) 曲线的平行移动给出了上述内积间的变换。

定义 设 \(C^\infty\) 流形 \(M\) 具有联络 \(\nabla\)。曲线 \(C: J \to M\) 称为测地线，如果切向量 \(\{C'(t)\}\) 沿着 \(C\) 平行，即 \(\nabla_{C'(t)} C'(t) = 0\)。

由 (3.2)，测地线 \(C\) 的局部坐标表达式为

\[
\frac{d^2 C^k}{dt^2} + \sum_{i, j=1}^n \Gamma^k_{ij}(C(t)) \frac{dC^i}{dt}\frac{dC^j}{dt} = 0, \quad k = 1, 2, \ldots, n.
\]

所以，由二阶常微分方程理论可知对 \(M\) 中任一点 \(x\) 及点 \(x\) 的任一切向量 \(u \in T_x(M)\)，存在一条定义在开区间 \(J\) 上的测地线 \(C: J \to M\)，使得 \(C(0) = x, C'(0) = u\)，且它在有定义的区间上是唯一的。

定义 Riemann 流形 \((M, g)\) 称为完全的，如果关于 Riemann 联络的在开区间 \(J(\subset \mathbb{R})\) 上定义的测地线必可开拓到整个 \(\mathbb{R}\) 上。

可以证明下列定理。在 §2，我们知道，任一连通 Riemann 流形 \((M, g)\)，可以引进距离 \(d\)，使 \((M, d)\) 为距离空间，所以在其中可以定义什么叫有界集。

定理 3.2 (Hopf–Rinow) 设 \((M, g)\) 为连通 Riemann 流形，相应距离为 \(d\)，即 \((M, d)\) 为距离空间。则下面三个条件互相等价

a) \((M, g)\) 是完全 Riemann 流形，

b) \((M, d)\) 是完备距离空间，
e) (M, d)中任一有界集是相对紧的。

完全 Riemann 流形 (M, g) 中任两点，必有一条测地线相联。

下面在具有联络 ∇ 的 C^∞ 流形 M 中引进曲率张量。

任取 $x \in M$ 及 $u, v, w \in T_x(M)$. 取 $X, Y, Z \in \mathfrak{X}(M)$，使得 $X_x = u, Y_x = v, Z_x = w$. 记

$$R_x(u, v, w) = (\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z).$$

易证 $R_x(u, v, w)$ 与 X, Y, Z 的特殊选取无关。

定义 设 M 是具有联络 ∇ 的流形。对 M 中每点，定义三线性映射

$$R_x: T_x(M) \times T_x(M) \times T_x(M) \to T_x(M).$$

则 $R_x: x \to R_x$ 是 M 上张量场，称为联络 ∇ 的曲率张量。

取定 $u, v \in T_x(M)$. 还可以定义 $T_x(M)$ 到自身的线性变换 $R_x(u, v), R_x(u, v)w = R_x(u, v, w), \forall w \in T_x(M)$.

由于本讲义没有涉及曲率张量的许多基本性质，例如 Biachi 方程等等，所以我们一概不叙述，仅给出以下命题。

命题 3.2 设 (M, g) 为 Riemann 流形，记 R 为关于 Riemann 联络的曲率张量。设 $\varphi: M \to M$ 是度量变换，R 在 φ 下不变，即有

$$d\varphi_x(R_x(u, v, w)) = R_{\varphi(x)}(d\varphi_x(u), d\varphi_x(v), d\varphi_x(w)), \forall u, v, w \in T_x(M), x \in M.$$ 证 由于 φ 为 M 到自身上的 C^∞ 同胚，所以 $d\varphi$ 诱导了 Lie 代数 $\mathfrak{X}(M)$ 的同胚。记 ∇ 为 Riemann 流形 (M, g) 的 Riemann 联络，任取 $X, Y \in \mathfrak{X}(M)$，定义

$$(X, Y) \to (d\varphi)^{-1}\nabla_{(d\varphi)(X)}((d\varphi)Y).$$

可以证明它也是 (M, g) 上的 Riemann 联络，记作 ∇'. 由 Riemann 联络的唯一性可知 $\nabla' = \nabla$，即

$$\nabla'_{X}Y = \nabla_{X}Y, \forall X, Y \in \mathfrak{X}(M).$$

按照联络 ∇' 定义的曲率张量 $R' = R'$. 这证明了

\[22\]
\[(d\varphi) (\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z)\]
\[= \nabla_{(d\varphi)X} \nabla_{(d\varphi)Y} ((d\varphi)Z) - \nabla_{(d\varphi)Y} \nabla_{(d\varphi)X} ((d\varphi)Z)\]
\[- \nabla_{d\varphi([X,Y])} ((d\varphi)Z), \quad \forall X, Y, Z \in \mathfrak{x}(\mathcal{M}).\]

由 \(d\varphi[X,Y] = [d\varphi(X), d\varphi(Y)]\)，所以证明了命题。
第二章 对称 Riemann 空间

§ 1 对称旁集空间

1.1. 对称旁集空间

记 G 为 Lie 群，G^0 为 G 的单位分量。

定义 Lie 群 G 的自同构 σ，如果适合 $\sigma^2 = id_G$，则 σ 称为对合。

定义 Lie 群 G 的旁集空间 G/K 称为对称的，如果在 Lie 群 G 中存在对合 σ，使得

$$G^0 \subset K \subset G^\sigma,$$

其中

$$G^\sigma = \{ a \in G \mid \sigma(a) = a \}.$$

先给出对称旁集空间的若干例子。

例 1 \mathbb{R}^{n+1} 中以原点为球心的单位超球 S^n 同构于对称旁集空间 $SO(n+1)/SO(n)$. 对 Lie 群 $SO(n+1)$，记

$$s = \text{diag}(-1, 1, \cdots, 1),$$

则 $SO(n+1)$ 有对合 σ: $a \to sa^{-1}$. 而

$$SO(n+1)^\sigma = \{ a \in SO(n+1) \mid sa = as \}$$

$$= \left\{ \begin{pmatrix} \pm 1 & 0 \\ 0 & b \end{pmatrix} \bigg| b \in O(n), \det b = \pm 1 \right\}. $$

所以 $SO(n+1)^0 = SO(n) \subset SO(n+1)^\sigma$. 即 $SO(n+1)/SO(n)$ 为对称旁集空间。

例 2 设 G 为连通 Lie 群，存在元素 a，适合 $a^2 = e$. 记 $c(a) = \{ b \in G \mid ba = ab \}$. 显然，$G$ 有对合 σ: $x \to axa^{-1}$. 而 $G^\sigma = c(a)$. 所以 $M = G/c(a)$ 为对称旁集空间。

例 3 设 G 为连通 Lie 群，直乘积 $G^2 = G \times G$. 在 Lie 群 G^2 中引进自同构 σ: $(a, b) \to (b, a)$, $\forall a, b \in G$. 显然 σ 为对合。而
设 $G^2 = \{(a, a) | a \in G\}$. 因此 G^2/G_0^2 为对称旁集空间。

将 G^2 作用在 G 上，定义为：$(a, b)c = abc^{-1}$, $(a, b) \in G^2$, $c \in G$. 点 e 的逆向子群为 G^2_0，所以作为流形，$G^2/G^2_0 \cong G$.

例 4 设 G 为具有有限中心的实连通半单 Lie 群，K 为 G 的最大紧子群。我们知道存在 G 的对合 σ，使 $K = G_\sigma$。即 G/K 为对称旁集空间。在这一章，这个例子将要得到详尽的讨论。

设 G/K 为对称旁集空间，它由 G 的对合 σ 所定义。由于 σ 诱导了 $\mathfrak{g} = \text{Lie } G$ 的自同构 $d\sigma$ (为方便起见，今后仍用 σ 来记它的微分 $d\sigma$)。于是 $\sigma^2 = \text{id}_{\mathfrak{g}}$ (即 \mathfrak{g} 为 Lie 代数 \mathfrak{g} 上恒等映射)。利用 Lie 代数 \mathfrak{g} 上线性变换 σ，引进根子空间

$$
\mathfrak{m} = \{X \in \mathfrak{g} | \sigma(X) = -X\}, \quad \mathfrak{m} = \{X \in g | \sigma(X) = -X\}.
$$

则有 Lie 代数 \mathfrak{g} 的空间直接和

$$
\mathfrak{g} = \mathfrak{m} + \mathfrak{m}.
$$

定义 Lie 代数 \mathfrak{g} 关于对合（自同构）σ 的分解 (1.1)，称为 \mathfrak{g} 关于对合 σ 的标准分解。

由对称旁集空间的定义，$K^0 = G^0_\sigma = \{\sigma \in G | \sigma(a) = a\}^0$。所以

$$
\text{Lie } K = \text{Lie } K^0 = \text{Lie } G_0^0 = \{X \in \mathfrak{g} | \sigma(X) = X\} = \mathfrak{m}.
$$

即有

$$
\mathfrak{m} = \text{Lie } K.
$$

又由于 σ 为 Lie 代数 \mathfrak{g} 的自同构，易证

$$
[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{m}, \quad [\mathfrak{f}, \mathfrak{m}] \subset \mathfrak{m}, \quad [\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{f}.
$$

而且，由此可以推出

$$
(Ad k) \mathfrak{m} \subset \mathfrak{m}, \quad \forall k \in K.
$$

事实上，由对称旁集空间定义，$K \subset G_\sigma$，即任取 $k \in K$，有 $\sigma(k) = k$。今任取 $a \in G$，则 $\sigma(kak^{-1}) = k \sigma(a) k^{-1}$. 由 k 定义了 G 的内自同构 A_k: $a \mapsto kak^{-1}$，所以 $\sigma A_k = A_k \sigma$. 因此，由 $dA_k = Ad(k)$，有 $\sigma Ad(k) = Ad(k) \sigma$，这证明了 (1.3)。

另一方面，由 $[\mathfrak{f}, \mathfrak{m}] \subset \mathfrak{m}$，所以任取 $X \in \mathfrak{f}$，则 \mathfrak{g} 上线性变换 adX 以 \mathfrak{m} 为不变子空间，因此在 \mathfrak{m} 上诱导了一个线性变换，记作 ad_mX。显然，$X \mapsto ad_mX$ 是 Lie 代数 \mathfrak{f} 的一个表示 ad_m，表示空间为 \mathfrak{m}。

• 25 •
今由 (1.8)，Lie 代数 \mathfrak{g} 上线性变换 $Ad(k), \forall k \in K$, 以 m 为不变子空间，所以诱导了以上线性变换，记作 $Ad_m(k), \forall k \in K$. 显然 $k \mapsto Ad_m(k)$ 给出了 Lie 群 K 的一个表示 Ad_m, 表示空间为 m.

Lie 群 K 的表示 Ad_m 的微分为 Lie 代数 \mathfrak{k} 的表示 ad_m. 这由 $d(Ad) = ad$ 在 \mathfrak{g} 上成立便可推出来的.

考虑自然映射 $\mathfrak{g} \to \mathfrak{g}/\mathfrak{t}$, 显然它定义了一个线性同构 $m \cong \mathfrak{g}/\mathfrak{t}$. 按照 $Ad_m \text{ 及 } Ad_{\mathfrak{g}/\mathfrak{t}}$, 所以空间 m 及 $\mathfrak{g}/\mathfrak{t}$ 为 K 模. 因此，我们经常将对称旁基空间 G/K 中点 $O = e K$ 的切空间 $T_0(G/K)$ 和空间 m 看作相同. 这时 Lie 群 K 的表示 Ad_m 和点 O 的 K 的逆向表示相同.

按照对称旁基空间 G/K 的定义，再 Lie 群 G 上存在对合 σ. 从这个对合出发，存在映射 σ_0, 使下图可交换:

$$
\begin{array}{ccc}
G & \xrightarrow{\sigma} & G/K \\
\downarrow & & \downarrow \sigma_0 \\
G & \xrightarrow{\sigma} & G/K
\end{array}
$$

其中 σ 为自然映射，而 σ_0: $G/K \to G/K$ 定义为
$$
\sigma_0(aK) = \sigma(a)K, \quad \forall a \in G.
$$

由 σ_0 的定义可知 $\sigma_0(0) = \sigma_0(\sigma(0)) = \sigma(\sigma(0)) = \sigma(0) = 0$, 即 σ_0 以 $0 = \sigma(0)$ 为不动点，又显然 $\sigma_0^2 = id_{G/K}$.

再任取 $x \in G/K$, 记 $x = \pi(a)$, 对 τ_0: $G/K \to G/K$, 定义为
$$
\tau_0(gK) = (ag)K, \quad \forall g \in G.
$$

记
$$
\sigma_x = \tau_x \sigma_0 \tau_x^{-1},
$$
易证 σ_x 与 $x = \pi(a)$ 的代表元 a 的选取无关. 所以 σ_x 定义了 G/K 到它自身上的 C^∞ 映射，且 σ_x 以 x 为不动点，又 $\sigma_x^2 = id_{G/K}$.

定义 符号同上，设对称旁基空间 G/K 由 G 的对合 σ 所定义，任取 $x \in G/K$, 则 G/K 到自身上的映射 σ_x 称为点 x 的对称变换，简称为点 x 的对称.

命题 1.1 点 x 为 σ_x 的孤立不动点，且 $d\sigma_x = -id$ 在
\(T_s(G/K) \) 上成立。

证 显然只要对点 \(O = \pi(\theta) \) 证明此命题即可。今有映射

\[
\begin{align*}
\mathfrak{g} & \xrightarrow{\exp} G \\
\pi & \xrightarrow{\pi} G/K.
\end{align*}
\]

而 \(\pi \circ \exp : \mathfrak{g} \to G/K \) 定义了射影 \(\pi \circ \exp : m \to G/K \)。且在 \(m \) 的原点附近为局部微分同胚。即存在 \(m \) 中 \(O \) 的开邻域 \(U \) 到 \(G/K \) 中 \(O = \pi(\theta) \) 的开邻域上的微分同胚。我们可以缩小 \(U \)，使得无妨设 \(U \) 适合 \(U = -U \)。今

\[
\sigma_0(\pi(\exp X)) = \pi(\sigma_0(\exp X)) = \pi(\exp(-X)), \quad \forall X \in m.
\]

由 \(\pi \circ \exp \) 在 \(U \) 上为微分同胚。所以 \(d\sigma_0 \) 在 \(U \) 上诱导为映射 \(X \to -X \)，即 \(d\sigma_0 = -id \) 在 \(T_0(G/K) \) 上成立。且由

\[
\sigma_0(\pi(\exp X)) = \pi(\exp(-X)), \quad \forall X \in m
\]

可知在 \(G/K \) 上 \(\sigma_0 \) 以 \(O = \pi(\theta) \) 为孤立不动点。命题证完。

显然，有

(1.4) \[
\sigma_0 \tau_a = \tau_{\sigma(a)} \sigma_0, \quad \forall a \in \mathfrak{g}.
\]

事实上，任取 \(x \in G/K \)，记 \(x = \pi(b) \)。而

\[
\sigma_0 \tau_a(x) = \sigma_0 \tau_a(bK) = \sigma_0(abK) = \sigma(ab)K = \sigma(a)\sigma(b)K
\]

\[
= \tau_{\sigma(a)}(\sigma(b)K) = \tau_{\sigma(a)}\sigma_0(bK) = \tau_{\sigma(a)}\sigma_0(x).
\]

这证明了(1.4)。

定理 1.1 对称旁集空间 \(G/K \) 上 \((\tau, s)\) 型 \(\mathcal{G} \) 不变张量场 \(T \) 有

\[
\sigma_0 T = (-1)^{r+s} T, \quad \forall x \in G/K.
\]

证 因为 \(\sigma_0 = \tau_{\sigma_0} \tau_{\sigma_0}^{-1} \)，所以对 \(\mathcal{G} \) 不变张量场 \(T \)，只要在 \(x = 0 = \pi(\theta) \) 时证明定理即可。先给定 \(T \)，于是 \(\sigma_0 T \) 仍为 \((\tau, s)\) 型张量场。下面证明它 \(\mathcal{G} \) 不变。任取 \(a \in \mathcal{G} \)，则由 (1.4)，

\[
\tau_a(\sigma_0 T) = (\tau_0 \sigma_0)(\sigma_0 T) = (\sigma_0 \tau_{\sigma_0}(a)) T = \sigma_0(\tau_{\sigma_0}(a) T) = \sigma_0 T,
\]

所以 \(\sigma_0 T \) 仍 \(\mathcal{G} \) 不变。

注意由命题 1.1，在 \(T_0(G/K) \) 上 \(d\sigma_0 = -id \)。于是在点 \(O = \pi(\theta) \)，

\[
\sigma_0 T = (-1)^{r+s} T.
\]

但 \(\sigma_0 T \) 及 \((-1)^{r+s} T \) 都 \(\mathcal{G} \) 不变。它们在 \(O = \pi(\theta) \) 相等，所以 \(\mathcal{G}/K \) 上相等。定理证完。

推论 设 \(\omega \) 为 \(G/K \) 上 \(p \) 次 \(\mathcal{G} \) 不变外微分式，则 \(d\omega = 0 \)。
证 熟知外微分 d 和微分同胚可交换，所以
$$d(\sigma_0 \omega) = \sigma_0 (d \omega).$$
由定理 1.1，有 $(-1)^p d \omega = (-1)^{p+1} d \omega$，这证明了 $d \omega = 0$。推论证完。

1.2. Riemann 对称旁集空间

定义 具有 G 不变 Riemann 度量 g 的对称旁集空间 G/K 称为 Riemann 对称旁集空间，记作 $(G/K, g)$。

设 $(G/K, g)$ 为 Riemann 对称旁集空间。由标准线性同构 $T_0 (G/K) \cong m$ 及第一章引理 2.1 的证明可知 Riemann 度量 g 定义了 m 上内积 Q，使得对一切 $k \in K$，

(1.5) \quad Q(Ad_m(k) X, Ad_m(k) Y) = Q(X, Y), \quad \forall X, Y \in m.$

由此可推出

(1.6) \quad Q([Z, X], Y) + Q(X, [Z, Y]) = 0, \\
\quad \forall X, Y \in m, Z \in f.$

当 K 连通，则(1.5)和(1.6)等价。

这一节开头给出的四个例子中，K 都是紧子群。由第一章 § 2 可知它们都有 G 不变 Riemann 度量，所以它们都是 Riemann 对称旁集空间。

命题 1.2 设 $(G/K, g)$ 为 Riemann 对称旁集空间，则 G/K 中点 x 的对称 σ_x 是具有孤立不动点 x 的等度量变换。

证 由命题 1.1，只证 $\sigma_x g = g$。事实上，g 为 $(2, 0)$ 型 G 不变张量场，由定理 1.1，$\sigma_x g = (-1)^2 g = g$，证完。

定义 设实 Lie 代数 \mathfrak{g} 有对合自同构 σ，关于 σ 有标准分解 $\mathfrak{g} = \mathfrak{f} + \mathfrak{m}$。设 \mathfrak{m} 上有适合 (1.6) 的内积 Q。则 $(\mathfrak{g}, \sigma, Q)$ 称为 Riemann 对称 Lie 代数。如果子代数 \mathfrak{f} 中没有 \mathfrak{g} 的非零理想，则此 Riemann 对称 Lie 代数称为有效的。

上面的讨论给出了对 Riemann 对称旁集空间 $(G/K, g)$，则 $\mathfrak{g} = \text{Lie } G$ 为 Riemann 对称 Lie 代数。反之，任给一个 Riemann 对称 Lie 代数 $(\mathfrak{g}, \sigma, Q)$。由 Lie 代数 \mathfrak{g} 在同构意义下唯一决定了

・28・
一个连通且单连通 Lie 群 \hat{G}，使 Lie $\hat{G} = \mathfrak{g}$。这时 \mathfrak{g} 的对合自同构 σ 可以唯一地扩充为 \hat{G} 的对合自同构，仍用 σ 表示。取 $\hat{G}_\sigma = \hat{K}$，按定义，\hat{G}/\hat{K} 为由 \hat{G} 的对合 σ 定义的对称旁集空间。由第一章 §2 可知，\mathfrak{m} 上内积 Q 决定了 \hat{G}/\hat{K} 的 \hat{g} 不变 Riemann 度量 \hat{g}，所以 $(\hat{G}/\hat{K}, \hat{g})$ 为 Riemann 对称旁集空间。由它决定的 Riemann 对称 Lie 代数为 \mathfrak{g}，因此有 \mathfrak{g} 的对合自同构 σ 不一定能扩充为 \hat{G} 的对合自同构，所以尽管 \mathfrak{g} 的子代数 \mathfrak{k} 唯一对应 \hat{G} 的子群 K，一般 \hat{G}/\hat{K} 不一定是对称旁集空间。

可以证明，上面构造的 Riemann 对称旁集空间 \hat{G}/\hat{K} 是单连通的。

且可证明 \mathfrak{g}、σ、Q 有效当且仅当 \hat{G} 在 \hat{G}/\hat{K} 上几乎有效。这些结论，读者交自证之。

定义 Riemann 对称 Lie 代数 $(\mathfrak{g}, \sigma, Q)$，$(\mathfrak{g}_1, \sigma_1, Q_1)$ 称为同构的，如果存在 ρ 到 \mathfrak{g}_1 上的同构，使 $\rho \sigma = \sigma_1 \rho$，于是对标准分解 $\mathfrak{g} = \mathfrak{f} + \mathfrak{m}$，$\mathfrak{g}_1 = \mathfrak{f}_1 + \mathfrak{m}_1$，有 $\rho(f_1) = f_1$，$\rho(m) = m_1$。而

$$Q_1(\rho(X), \rho(Y)) = Q(X, Y), \quad \forall X, Y \in \mathfrak{m}.$$

§2 对称 Riemann 空间

定义 Riemann 流形 (M, g) 称为对称 Riemann 空间，如果对 M 中每点 x，存在点 x 的对称 σ_x，这里对称 σ_x 定义为 M 的这种等度量变换，它以 x 为孤立不动点，且有 $\sigma_x^2 = id_M$。

由命题 1.2 可知 Riemann 对称旁集空间 $(\hat{G}/\hat{K}, g)$ 是对称 Riemann 空间。下面来讨论逆命题。为此，首先证明

命题 2.1 设 (M, g) 为连通对称 Riemann 空间，则

(a) 对 $x \in M$，σ_x 由 x 唯一决定，且 $(d\sigma_x)_x = -id$ 在 $T_x(M)$ 上成立；

(b) (M, g) 是完全 Riemann 流形；

(c) (M, g) 是齐性 Riemann 流形；

· 29 ·
(d) (M, g) 的通用覆盖形是称 Riemann 空间。

证 (a) 熟知在 $T_x(M)$ 的原点附近某个邻域 U 上存在映入 M 内的映射 \exp_x, 使得任取 $u \in U$, 则 $\exp_x(u)$ 为过 x 的测地线。当 U 充分小, \exp_x 是 U 到 M 的点 x 的某个开邻域上的微分同胚, 且 $\sigma_x(\exp_x(u)) = \exp_x((d\sigma_x)_xu)$。

今 $\sigma_x^2 = Id$, 所以 $(d\sigma_x)_x^2 = Id$. 为了证明 $(d\sigma_x)_x = -Id$, 只要证明 $T_x(M)$ 上线性变换 $(d\sigma_x)_x$ 无特征值 1. 事实上, 若存在 $0 \neq u \in T_x(M)$, 使 $(d\sigma_x)_x(u) = u$, 那末 $(d\sigma_x)_x(tu) = tu$, $t \in \mathbb{R}$. 今

$$\sigma_x(\exp_x(tu)) = \exp_x((d\sigma_x)_x(tu)) = \exp_x(tu).$$

但是 σ_x 只有孤立不动点 x, 这证明了 $\exp_x(tu) = x$ 当 t 充分小时成立. 所以证明了 $u = 0$, 导出矛盾. 这推出 $(d\sigma_x)_x = -Id$ 在 $T_x(M)$ 上成立.

由于 σ_x 为等度量变, 且以 x 为孤立不动点, 由第一章定理 2.2, 所以 σ_x 由 x 唯一决定.

(b) M 上任取测地线 $\gamma(t), 0 \leq t \leq l$. 构造 M 中曲线 $\tilde{\gamma}$ 如下:

$$\tilde{\gamma}(t) = \gamma(t), 0 \leq t \leq l; \tilde{\gamma}(t) = \sigma_{\gamma(0)}(\gamma(2l-t)), l \leq t \leq 2l.$$

由于 $\sigma_{\gamma(0)}$ 为等度量变换, 所以 $\sigma_{\gamma(0)}(\gamma(2l-t)), l \leq t \leq 2l$ 也是测地线. 显然 $\tilde{\gamma}(t), 0 \leq t \leq 2l$ 光滑. 所以 $\tilde{\gamma}(t), 0 \leq t \leq 2l$ 为测地线, 它由测地线 $\gamma(t), 0 \leq t \leq l$ 开拓而得. 这也证明了任一测地线可开拓至 $(-\infty, \infty)$, 即 (M, g) 为完全 Riemann 流形.

(e) 为了证 (M, g) 齐性, 任取 $x, y \in M$, 按照第一章定理 3.2 及 (b) 可知, 存在连结 x, y 这两点的测地线 γ. 在 γ 上取中点, 关于此中点的对称将 x 映为 y. 由此可知, M 的等度量变换群 $I(M, g)$ 在 M 上可递, 即 M 为齐性 Riemann 流形.

(d) 设 (M, g) 为对称 Riemann 空间, \tilde{M} 为 M 的通用覆盖, $\pi: \tilde{M} \to M$ 为覆盖映射. 自然, 由于覆盖映射为局部微分同胚, 所以 M 的 Riemann 度量 g 可以提升为 \tilde{M} 的 Riemann 度量, 记作 \tilde{g}. 即 (\tilde{M}, \tilde{g}) 为 Riemann 流形. 另一方面, M 的微分自同胚 σ, 也可利用覆盖映射 π, 提升为 \tilde{M} 的微分自同胚 $\tilde{\sigma}$, 使得 $\pi \sigma = \pi \tilde{\sigma}$, 而且, 如果 $\sigma(x) = x$, 则任取 $\tilde{x} \in \pi^{-1}(x)$, 存在 $\tilde{\sigma}$, 使 $\tilde{\sigma}(\tilde{x}) = \tilde{x}$.

• 30 •
因此，对 M 上 x 的对称 σ_x，存在 \tilde{M} 上微分数同胚 $\tilde{\sigma}_x$ 使 $\sigma_x = \pi \tilde{\sigma}_x$，且 $\tilde{\sigma}_x$ 以 \tilde{x} 为不动点。显然由 $\sigma_x^2 = id_M$ 可知 $\tilde{\sigma}_x^2(y) = \tilde{\pi}^{-1}(y)$，$\forall y \in M$。但 $\tilde{\sigma}_x$ 为局部同胚，且 $\tilde{\sigma}_x^2(\tilde{x}) = \tilde{x}$，这证明了 $\tilde{\sigma}_x^2 = id_{\tilde{M}}$。显然可证 \tilde{x} 为 $\tilde{\sigma}_x$ 的孤立不动点，即 $\tilde{\sigma}_x$ 为 \tilde{M} 中 \tilde{x} 的对称，$\forall \tilde{x} \in \tilde{M}$，即 (\tilde{M}, \tilde{g}) 为对称 Riemann 空间。命题证完。

定理 2.1 连通 Lie 群 G 的 Riemann 对称旁集空间 $(G/K, g)$ 是连通对称 Riemann 空间。反之，连通对称 Riemann 空间 (M, g) 等度量同构于一个 Riemann 对称旁集空间 $(G/K, g)$，其中连通 Lie 群 G 在 G/K 上作用有效。（注意，取 $G = I(M, g)^0$ 即可。）

证 命题 1.2 给出了前一断言的证明。下面证后一断言。取 $G = I(M, g)^0$。由命题 2.1 之 (o) 可知 M 的等度量变换群 $I(M, g)$ 在 M 上作用可递。由 M 连通，G 为 $I(M, g)$ 的开子群，所以 G 在 M 上作用可递。显然 G 在 M 上作用有效。

今对 M 中一定点 0，记关于点 0 的迷向子群为 K，即

$$K = \{ a \in G | a0 = 0 \}.$$

G 中的对称记作 σ_0。任取 G 中元素 a，由 $\sigma_0 a \sigma_0 \in G$ 可知 G 中有映射 $\sigma: a \rightarrow \sigma_0 a \sigma_0$。显然 σ 为 G 的对合自同构。记

$$G_0 = \{ a \in G | \sigma(a) = a \}.$$

下面来证明 $G_0 \subset K \subset G_0$。

今任取 $k \in K$，则 $\sigma(k)0 = \sigma_0 k \sigma_0(0) = 0$，所以 $\sigma(k) \in K$，即 $\sigma(K) \subset K$。另一方面，由 $\sigma(k) = \sigma_0 k \sigma_0$，以及由命题 2.1 之 (a)，

$$(d\sigma_0)_k = -id$$

在 $T_0(M)$ 上成立，所以 $(d\sigma(k))_0 = (dk)_0$。由第一章定理 2.2，所以 $\sigma(k) = k$，$\forall k \in K$。此即 $K \subset G_0$。再遍取 $X \in g$，使 $\exp tX \in G_0$, $t \in \mathbb{R}$。熟知 G_0 由这些 $\exp tX$ 生成。所以为了证 $G_0 \subset K$，只要证明 $X \in g$ 有 $\exp tX \in G_0$, $\forall t \in \mathbb{R}$，则可推出 $\exp tX \in K$, $\forall t \in \mathbb{R}$。令由条件 $\sigma(\exp tX) = \exp tX$, $\forall t \in \mathbb{R}$，于是 $\sigma_0(\exp tX) \sigma_0 = (\exp tX)$, $\forall t \in \mathbb{R}$。但是 σ_0 以 0 为孤立不动点，而

$$\sigma_0(\exp tX0) = \sigma_0(\exp tX) \sigma_00 = \exp tX0, \quad \forall t \in \mathbb{R},$$

所以存在 $\epsilon > 0$，当 $|t| < \epsilon$，有 $(\exp tX)0 = 0$。因此 $(\exp tX)0 = 0$。
\(\forall t \in \mathbb{R}, \) 这证明了 \(\exp tX \in K, \forall t \in \mathbb{R}. \) 至此证明了 \(G^0c \subset K \subset G. \)
所以 \(G/K \) 为对称旁集空间。自然 \(G \) 在 \(G/K \) 上作用有效。

前面已经证明过这时有微分同胚 \(\varphi: M \to G/K. \) 由 \((M, g)\)
为齐性 Riemann 流形, 所以 \(d\varphi(g) \) 为 \(G/K \) 的 \(G \) 不变 Riemann 度量, 仍用 \(g \) 记之。即 \((G/K, g)\) 为 Riemann 对称旁集空间, 自然 \(\varphi \)
为等度量同构。至此证明了定理。

需要注意的是, 在证明中, 我们取了 \(G = I(M, g) \). 实际上, 对
称 Riemann 空间 \(M \) 可以等度量同构于不同的连通 Lie 群 \(G \) 构造的
Riemann 对称旁集空间 \((G/K, g).\)

定理 2.2 设连通 Lie 群 \(G \) 具有对合自同构 \(\sigma \), 按照 \(\sigma \) 构造
了一个 Riemann 对称旁集空间 \((G/K, g). \) 记 \(\tau_0: gK \to agK, \)
\(\forall g \in G \) 为 \(a. \) 记 \(g = \text{Lie} G \) 关于 \(\sigma \) 的标准分解为 \(g = t + m. \)
记 \(0 = eK, \) 对 \(X \in m, \) 记 \(\gamma_X(t) = (\exp tX)0, \forall t \in \mathbb{R}, \) 则有

(a) \(\gamma_X(t) \) 是 \(G/K \) 的测地线。且对过 \(0 = eK \) 的任一测地线
\(\gamma(t), \) 存在且只存在一个 \(X \in m, \) 使 \(\gamma(t) = \gamma_X(t), \forall t \in \mathbb{R}. \)

(b) 沿着 \(\gamma_X(t) \) 的平行移动由 \(\tau_{\exp tX} \) 的微分 \(d\tau_{\exp tX} \) 给出。
证 (Koszul[1]) 先证 (b). 取定 \(X \in m. \) 记 \(\sigma(t) = \exp tX. \)
于是 \(\gamma_X(t) = a(t)0. \) 而由 \(\sigma(\exp tX) = \exp(-t)X, \) 即 \(\sigma(a(t)) \)
= \(a(-t). \) 取 \(\theta > 0, \) 记
\[\beta = \sigma_{\gamma_X(\theta/2)} = a\left(\frac{\theta}{2}\right) \sigma_0a\left(-\frac{\theta}{2}\right), \]
则
\[\beta(\gamma_X(t)) = a\left(\frac{\theta}{2}\right) \sigma_0a\left(-\frac{\theta}{2}\right) a(t)0 = a\left(\frac{\theta}{2}\right) \sigma_0a\left(t - \frac{\theta}{2}\right) 0 \]
\[= a\left(\frac{\theta}{2}\right) \sigma(a\left(t - \frac{\theta}{2}\right)) \sigma_00 = a\left(\frac{\theta}{2}\right) a\left(\frac{\theta}{2} - t\right) 0 \]
\[= a(\theta - t)0 = \gamma_X(\theta - t). \]
记 \(u(t) \in T_{\gamma_X(t)}(G/K), u = u(0) \in T_0(G/K), \) 使 \(u(t) \) 为从 \(u \) 沿着
\(\gamma_X(t) \) 的平行移动。由于 \(\beta \) 为等度量变换，因此 \((d\beta)u(t) \) 为沿着
\(\beta(\gamma_X(t)) = \gamma_X(\theta - t) \) 的平行移动。此即 \((d\beta)(u(\theta - t)) \) 为沿着
\(\gamma_X(t) \) 的平行移动，所以 \((d\beta)(-u(\theta - t)) \) 为沿着 \(\gamma_X(t) \) 的平行移
动，取$ t = \frac{\theta}{2} $，则由$ \beta $为关于$ \gamma \left(\frac{\theta}{2} \right) $的对称，知$ d\beta $在点$ \gamma \left(\frac{\theta}{2} \right) $值为$ -i \delta $。所以

$$ d\beta \left(-u \left(\frac{\theta}{2} \right) \right) = u \left(\frac{\theta}{2} \right) $$

在$ T_{\gamma \left(\frac{\theta}{2} \right)} (G/K) $上成立。所以两个平行向量场$ \{u(t)\} $和$ \{(d\beta)(-u(\theta-t))\} $在$ T_{\gamma \left(\frac{\theta}{2} \right)} (G/K) $上相等。因此它们沿着$ \gamma (t) $相等，即有$ u(t) = (d\beta)(-u(\theta-t)) $，特别$ (d\beta)(-u) = u(\theta) $。所以

$$ (d(\beta\sigma_0))(u) = (d\beta)(d\sigma_0)(u) = (d\beta)(-u) = u(\theta). $$

今

$$ \beta\sigma_0 = a \left(\frac{\theta}{2} \right) \sigma_\alpha \left(-\frac{\theta}{2} \right) \sigma_0 = a \left(\frac{\theta}{2} \right) \sigma \left(a \left(-\frac{\theta}{2} \right) \right) $$

$$ = a \left(\frac{\theta}{2} \right) a \left(\frac{\theta}{2} \right) = a(\theta). $$

这证明了$ (da(\theta))(u) = u(\theta) $，即沿着$ \gamma(t) $的平行移动由$ a(\theta) = \pi_{\exp \theta X} $的微分$ da(\theta) $给出。这证明了(b)。

再证(a)。对自然映射$ \pi : G \to G/K $，由于

$$ \pi(a(t)) = \pi(\exp tX) = (\exp tX)(eK) = (\exp tX)0 = \gamma(t), $$

于是对于$ X_0 \in T_e(G) $，有

$$ (da(t))(d\pi)(X_0) = (d\pi)(da(t)(X_0) $$

$$ = (d\pi)(X_0) = \gamma'_X(t), $$

其中$ \gamma'_X(t) $记曲线$ \gamma(t) $的切向量。由(b)可知，$ \gamma'_X(t) $为从切向量$ d\pi(X_0) $出发，沿着$ \gamma(t) $的平行移动。所以$ \gamma_X(t) $为测地线，其中

$$ \gamma'_X(0) = d\pi(X_0). $$

反之，对任一过$ 0 = \pi(0) $的测地线$ \gamma(t) $，它由$ \gamma'(0) $唯一决定。今$ \gamma'(0) \in T_0(G/K) $，而$ \pi : T_e(G) \to T_0(G/K) $之核为$ \xi $。所以诱导了同构$ m \cong T_0(G/K) $。在这同构下$ \gamma'(0) $对应$ X \in m $。则$ \gamma_X(t) $和$ \gamma(t) $都有$ \gamma_X(0) = \gamma(0) = 0, \gamma'_X(0) = \gamma'(0) = X $。由测地线
的唯一性，所以 $\gamma_x(t) = \gamma(t)$，这证明了(a)。定理证完。

推论 Riemann 对称旁集空间 $(G/K, g)$ 上 G 不变张量场 T 是平行的，即 $\nabla T = 0$。确切地说，$\nabla_\xi T = 0, \forall \xi \in \mathfrak{X}(G/K)$. 特别，曲率张量场 R 是平行的。

证 用定理 2.2 及第一章，§3 中 $\nabla_x T$ 的定义，便能证明这个推论。

在结束这一节前，介绍对称 Riemann 空间的推广，即所谓局部对称 Riemann 空间。它定义为：设 (M, g) 为 Riemann 流形。对 M 中每一点 x，存在一个邻域 U_x，以及 U_x 到自身的等度量变换 σ_x，使得 $\sigma_x^* = id_{U_x}$，且 σ_x 以 x 为孤立不动点。

在 Riemann 流形中，局部对称 Riemann 空间可以用 $\nabla R = 0$ 来刻划，其中 R 为曲率张量。又已知局部对称 Riemann 空间局部等度量同构于一个对称 Riemann 空间（参考 Helgason[8]）。

§3 对称 Riemann 空间的例子

在这一节给出若干重要的对称 Riemann 空间的例子。这里 $(G/K, g)$ 表示 Riemann 对称旁集空间，相应的 Riemann 对称 Lie 代数为 (\mathfrak{g}, σ)。这里 $\mathfrak{g} = \text{Lie} G, \mathfrak{g} = \mathfrak{t} + \mathfrak{m}$ 为标准分解，Q 为 \mathfrak{m} 上 $\text{Ad}_m K$ 不变内积。下面关于矩阵论符号从习惯。

其中前三个例子，在第一章，§2 中已经讨论过。

例 1 Euclid 空间 (\mathbb{R}^n, g)。

令群 $G = \left\{ \begin{pmatrix} 1 & 0 \\ \beta & \alpha \end{pmatrix} \bigg| \alpha \in SO(n), \beta \in \mathbb{R}^n \right\}$

在 (\mathbb{R}^n, g) 上作用可逆，且由等度量变换构成。

\mathbb{R}^n 中原点的近向子群为

$$K = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix} \bigg| \alpha \in SO(n) \right\}.$$
所以 Euclid 空间 \((\mathbb{R}^n, g)\) 可看作 Riemann 对称旁集空间 \((G/K, g)\)，其中 \(G\) 的对合自同构 \(\sigma\) 定义为

\[
\sigma \begin{pmatrix} 1 & 0 \\ \beta & \alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\beta & \alpha \end{pmatrix}.
\]

而 \(G_\sigma = K\). 下面引出 \(m\) 上内积 \(Q\).

今

\[
\mathfrak{g} = \left\{ \begin{pmatrix} 0 & 0 \\ x & \alpha \end{pmatrix} \mid \alpha + x = 0, \ x \in \mathbb{R}^n \right\},
\]

\[
\sigma \begin{pmatrix} 0 & 0 \\ x & \alpha \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -x & \alpha \end{pmatrix},
\]

\[
\mathfrak{k} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & \alpha \end{pmatrix} \mid \alpha + \alpha = 0 \right\},
\]

\[
\mathfrak{m} = \left\{ \begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix} \mid x \in \mathbb{R}^n \right\}.
\]

而 \(\mathfrak{g} = \mathfrak{k} + \mathfrak{m}\) 为标准分解。又

\[
Q \left(\begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ y & 0 \end{pmatrix} \right) = \langle x, y \rangle,
\]

其中 \(\langle x, y \rangle\) 为 \(\mathbb{R}^n\) 中的 Euclid 内积。由直接验证可知 \((\mathfrak{g}, \sigma, Q)\) 为 \((\mathbb{R}^n, g)\) 决定的 Riemann 对称 Lie 代数。

例 2 有限维单位球 \((S^n, g)\).

已知群 \(G = SO(n+1)\) 在 \((S^n, g)\) 上等度量地作用可逆。对 \(S^n\) 中定点 \((1, 0, \cdots, 0)\) 的逆向子群为

\[
K = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix} \mid \alpha \in SO(n) \right\}.
\]

所以 \((S^n, g)\) 可看作 Riemann 旁集空间 \((G/K, g)\).

在 \(G\) 上引进映射 \(\sigma\):

\[
\sigma(a) = SaS^{-1},
\]

其中 \(S = \text{diag}(-1, 1, \cdots, 1) \in O(n+1)\). 显然 \(\sigma\) 为 \(G\) 的对合自同构。而且 \(G_\sigma = K\)，而 \((G/K, g)\) 为 Riemann 对称旁集空间。

下面描述由 \((G/K, g)\) 决定的 Riemann 对称 Lie 代数 \((g, \sigma, Q)\)，其中
\[
\begin{align*}
\sigma &= \left\{ \begin{pmatrix} 0 & -t \xi \\ \xi & a \end{pmatrix} \middle| t^a + a = 0, \xi \in \mathbb{R}^n \right\}, \\
\sigma &\begin{pmatrix} 0 & -t \xi \\ \xi & a \end{pmatrix} = S \begin{pmatrix} 0 & -t \xi \\ \xi & a \end{pmatrix} S^{-1} = \begin{pmatrix} 0 & t \xi \\ -\xi & a \end{pmatrix}. \\
m &= \left\{ \begin{pmatrix} 0 & -t \xi \\ \xi & 0 \end{pmatrix} \middle| \xi \in \mathbb{R}^n \right\}, \\
f &= \left\{ \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix} \middle| t^a + a = 0 \right\}. \\
Q \begin{pmatrix} 0 & -t \xi \\ \xi & 0 \end{pmatrix}, \begin{pmatrix} 0 & -t \eta \\ \eta & 0 \end{pmatrix} \right\} = -\frac{1}{2} \text{Tr} \left(\begin{pmatrix} 0 & -t \xi \\ \xi & 0 \end{pmatrix}, \begin{pmatrix} 0 & -t \eta \\ \eta & 0 \end{pmatrix} \right).
\end{align*}
\]

注意 \(G/G_\sigma \) 是 \(n \) 维实射影空间。

例 3 Poincaré 上半平面 \((H^2, g) \).

记 \(z \) 为单复变数, 则 \(H^2 = \{ z \in \mathbb{C} | \text{Im} z > 0 \} \). 全纯自同构群熟知为

\[
z \mapsto \frac{az + b}{cz + d}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{R}).
\]

Riemann 度量为

\[
g = \frac{dz \overline{dz}}{(\text{Im}(z))^2}.
\]

记 \(G = \text{SL}(2, \mathbb{R}) \). 自然 \(G \) 由等度量变换构成。且 \(G \) 在 \(H^2 \) 上作用可递。

\(H^2 \) 中取定点 \(\sqrt{-1} \), 则此点的迷向子群

\[
K = \text{SO}(2) = \left\{ z \mapsto \frac{az + b}{-bz + a} \middle| \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in \text{SL}(2, \mathbb{R}) \right\}.
\]

所以 \((H^2, g) \) 可看作 Riemann 旁集空间 \((G/K, g) \).

在 \(G \) 中引进对合自同构 \(\sigma \):

\[
\sigma \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{R}).
\]

这时 \(G_{\sigma} = \text{SO}(2) = K \). 所以 \((G/K, g) \) 为 Riemann 对称旁集空间。
由它决定的 Riemann 对称 Lie 代数 \mathfrak{g} 定义为

$$\mathfrak{g} = \left\{ \begin{pmatrix} \xi & \zeta \\ \eta & -\xi \end{pmatrix} \middle| \xi, \eta, \zeta \in \mathbb{R} \right\}.$$

$$\sigma \begin{pmatrix} \xi & \zeta \\ \eta & -\xi \end{pmatrix} = -i \begin{pmatrix} \xi & \zeta \\ \eta & -\xi \end{pmatrix} = \begin{pmatrix} -\xi & -\eta \\ -\zeta & -\xi \end{pmatrix},$$

$$\mathfrak{m} = \left\{ \begin{pmatrix} \xi & \eta \\ \eta & -\xi \end{pmatrix} \middle| \xi, \eta \in \mathbb{R} \right\},$$

$$\mathfrak{f} = \left\{ \begin{pmatrix} 0 & -\eta \\ \eta & 0 \end{pmatrix} \middle| \eta \in \mathbb{R} \right\},$$

$$Q(X, Y) = 2 \text{Tr} XY, \quad \forall X, Y \in \mathfrak{m}.$$

注意 这个例子中，G 在 (H^3, g) 上作用几乎有效。事实上，$z = \frac{az + b}{cz + d}$ 当且仅当 $a = d, c = b = 0$. 即对应的

$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \in SL(2, \mathbb{R}).$$

所以 $a^2 = 1$, 即 $a = \pm 1$. 这证明了 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ 对应同一个变换。所以, 如果取

$$G = \left\{ z \mapsto \frac{az + b}{cz + d} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R}) \right\},$$

则 G 在 (H^3, g) 上作用有效。

例 4 设 H 为连通紧 Lie 群, $\mathfrak{h} = \text{Lie } H$. 由 H 紧, 所以在 \mathfrak{h} 上有 $Ad(H)$ 不变内积 \langle , \rangle.

取 $G = H \times H$, $K = \{(a, a) \in G\} \cong H$,

$$\sigma(a, b) = (b, a), \quad \forall (a, b) \in G.$$

自然 σ 为 G 的对合自同构, 使得 $G_\sigma = K$. 所以有对称旁集空间 G/K. 这时

$$\mathfrak{g} = \{(X, Y) \mid X, Y \in \mathfrak{h}\},$$

$$\sigma(X, Y) = (Y, X), \quad (X, Y) \in \mathfrak{g},$$

$$\mathfrak{m} = \{(X, -X) \mid X \in \mathfrak{h}\},$$

$$\mathfrak{f} = \left\{ \begin{pmatrix} 0 & -\eta \\ \eta & 0 \end{pmatrix} \middle| \eta \in \mathbb{R} \right\},$$

$$Q(X, Y) = 2 \text{Tr} XY, \quad \forall X, Y \in \mathfrak{m}.$$
\[t = \{ (X, X) \mid X \in \mathfrak{h} \}. \]

在 \(m \) 上定义内积 \(Q \) 如下:

\[Q((X, -X), (Y, -Y)) = 4\langle X, Y \rangle, \quad X, Y \in \mathfrak{h}, \]

则 \((g, o, Q)\) 为 Riemann 对称 Lie 代数。从而引进了 Riemann 对称旁集空间 \((G/K, g)\).

对 \(G/K \) 中任一点 \((a, b)K\)，对应一点 \(ab^{-1}\)。于是建立了 \(G/K \) 到 \(H \) 上的对应 \(\varphi: (a, b)K \to ab^{-1} \)。显然，这是 \(C^\infty \) 同胚。在意义上 \(G/K \) 和 \(H \) 可以看作相同。注意 \(H \) 有双边不变 Riemann 度量 \(\langle , , \rangle \)，且 \(\varphi \) 为 \((G/K, g)\) 到 \((H, \langle , , \rangle)\) 上的等度量变换。

下面两个例子，是对实数域 \(\mathbb{R} \)，复数域 \(\mathbb{C} \)，四数域 \(\mathbb{H} \) 都成立的例子。为了方便起见，这三种域用一个符号 \(\mathbb{k} \) 表示。

对 \(a \in \mathbb{k} \)，记 \(\bar{a} \) 为 \(a \) 的共轭元素。自然，当 \(\mathbb{k} = \mathbb{R} \) 时，\(\bar{a} = a \)。

记 \(M_{n,m}(\mathbb{k}) \) 为域 \(\mathbb{k} \) 上所有 \(n \times m \) 矩阵构成的域 \(\mathbb{k} \) 上的 \(nm \) 维右线性空间。 当 \(X \in M_{n,m}(\mathbb{k}) \)，则 \(\bar{X}, \bar{x} \) 分别记矩阵 \(X \) 的共轭矩阵及转置矩阵。记 \(\mathbb{k}^n = M_{n,1}(\mathbb{k}) \) 为 \(\mathbb{k} \) 上列向量构成的 \(n \) 维右线性空间。记 \(\mathbb{R}^n = M_{n,n}(\mathbb{R}) \) 为 \(\mathbb{R} \) 上所有 \(n \) 阶方阵构成的 \(n^2 \) 维右线性空间。记 \(M_n(\mathbb{k}) \) 中单位方阵，\(O_n \) 记 \(M_n(\mathbb{k}) \) 中零方阵。

取 \(\mathbb{k} = \mathbb{H} \)，\(\mathbb{H} \) 中标准基为 \(1, i, j, k \)。于是 \(\mathbb{H} \) 为 \(\mathbb{R} \) 上非交换可除结合代数。它有子代数 \(\mathbb{C} = \mathbb{R} + \mathbb{R}i \) 代数。这个子代数就是复数域。由于 \(ij = k \)，所以 \(\mathbb{H} \) 中任一元

\[q = a_0 + a_1i + a_2j + a_3k = (a_0 + a_1i) + (a_2 + a_3i)j, \]

其中 \(a_0, a_1, a_2, a_3 \in \mathbb{R} \)，即 \(a_0 + a_1i \) 为 \(\mathbb{H} \) 中的 \(\mathbb{C} \) 上 \(2 \) 维右线性空间。

任取 \(X = (\alpha_{uv}) \in M_n(\mathbb{H}) \)，每个 \(\alpha_{uv} = \alpha_{uv} + \beta_{uv}j \)，其中 \(\alpha_{uv}, \beta_{uv} \in \mathbb{C} \)。记

\[X_{uv} = \begin{pmatrix} \alpha_{uv} & -\beta_{uv} \\ \beta_{uv} & \alpha_{uv} \end{pmatrix}. \]

构作 \(2n \) 阶方阵
则有对应 \(\rho: X \rightarrow Y \)。显然 \(\rho: \mathbb{M}_n(\mathbb{H}) \rightarrow \mathbb{M}_{2n}(\mathbb{C}) \) 为 \(\mathbb{R} \)-代数的内射同态，且有

\[
\rho(iX) = i\rho(X), \quad \forall X \in \mathbb{M}_n(\mathbb{H}).
\]

在上述嵌入下，像为 \(\mathbb{M}_{2n}(\mathbb{C}) \) 的子代数。

最后，记 \(\det \) 为方阵的行列式，\(\text{Tr} \) 为方阵的迹。再记

\[
N(X) = \det X, \quad T(X) = \text{Tr}(X), \quad \text{当} \ K = \mathbb{R} \text{或} \mathbb{C},
\]

\[
N(X) = \det \rho(X), \quad T(X) = \text{Tr} \rho(X), \quad \text{当} \ K = \mathbb{H}.
\]

例 5 记

\[
U(n, \ K) = \{ a \in \mathbb{M}_n(\ K) | \overline{a}a = I_n \},
\]

\[
SU(n, \ K) = \{ a \in U(n, \ K) | N(a) = 1 \}.
\]

可证 \(U(n, \ K) \) 为紧 Lie 群，\(SU(n, \ K) \) 为 \(U(n, \ K) \) 的闭子群，所以也是紧 Lie 群。它们的 Lie 代数分别为

\[
u(n, \ K) = \{ X \in \mathbb{M}_n(\ K) | \overline{X} + X = 0 \},
\]

\[
su(n, \ K) = \{ X \in u(n, \ K) | T(X) = 0 \}.
\]

今对 \(a \in U(n, \ K) \)，则有

\[
\text{Ad}(a)X = aXa^{-1}, \quad \forall X \in u(n, \ K).
\]

另外，通常 \(U(n, \ K) = O(n) \)，即实正交群，\(SU(n, \ K) = SO(n) \); \(U(n, \mathbb{C}) = U(n) \)，即酉群，\(SU(n, \mathbb{C}) = SU(n) \); \(\mathbb{H} \) \(SU(n, \mathbb{H}) \equiv S_p(n) \)，其中 \(S_p(n) \) 为辛群。

下面给出一类 Riemann 对称旁集空间。

现在，取 \(1 \leq p \leq q \)，记

\[
G = SU(p + q, \ K).
\]

取

\[
S = \text{diag}(1, \ldots, 1, -1, \ldots, -1) \in U(p + q, \ K),
\]

则

\[
\sigma(a) = SaS^{-1}, \quad \forall a \in G
\]

是 \(G \) 的对合自同构。这时

\[
G_\sigma = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \in G | \alpha \in U(p, \ K), \beta \in U(q, \ K) \right\}.
\]

• 39 •
所以记 $K = G_\sigma$, 则 G/K 是对称旁集空间．

由它们决定的 Lie 代数

$$g = su(p+q, \mathbb{K}),$$

$$\sigma(X) = Ad(s)X = sXs^{-1}, \ \forall X \in g.$$

于是

$$m = \left\{ \begin{pmatrix} 0 & Z \\ -t\bar{Z} & 0 \end{pmatrix} \middle| Z \in M_{p,q}(\mathbb{K}) \right\} \subseteq su(p+q, \mathbb{K}),$$

$$\mathfrak{r} = \left\{ \begin{pmatrix} Y & 0 \\ 0 & Z \end{pmatrix} \right\} \subseteq su(p+q, \mathbb{K}) \left| ^t Y + Y = 0, ^t \bar{Z} + Z = 0 \right\}.$$

再定义 m 上内积

$$Q(X, Y) = \begin{cases} -\frac{1}{2} T(XY), & \mathbb{K} = \mathbb{R}, \\ -2T(XY), & \mathbb{K} = \mathbb{C}, \\ -T(XY), & \mathbb{K} = \mathbb{H}. \end{cases}$$

于是可证 (g, σ, Q) 为 Riemann 对称 Lie 代数．相应地可在 G/K 中引进 Riemann 度量 g, 使 $(G/K, g)$ 为 Riemann 对称旁集空间, 相应的 Riemann 对称 Lie 代数为 (g, σ, Q). 注意 G 在 G/K 上作用几乎有效, (g, σ, Q) 为有效 Riemann 对称 Lie 代数．

上面给出的 Riemann 对称旁集空间 G/K 有如下的几何实现．为此引进 \mathbb{K} 上 Grassmann 流形的概念．域 \mathbb{K} 上 $p+q$ 维线性空间 \mathbb{K}^{p+q} 中所有 p 维子空间构成集合 $G_{p,q}(\mathbb{K})$. \mathbb{K}^{p+q} 中标准基 $e_i = (0, \cdots, 0, 1, 0, \cdots, 0), i = 1, 2, \cdots, p+q$. 取 e_1, \cdots, e_p 生成的 p 维子空间为 $G_{p,q}(\mathbb{K})$ 中元素 0.

在 $G_{p,q}(\mathbb{K})$ 中可以自然地引进 Lie 变换群 $G = SU(p+q, \mathbb{K})$, 显然它在 $G_{p,q}(\mathbb{K})$ 上作用可逆．点 O 的逆向子群即 K. 所以按照对应 $aK \rightarrow aO, \forall a \in G$, 则可在 $G_{p,q}(\mathbb{K})$ 中引进 C^∞ 流形结构，使得 G/K 和 $G_{p,q}(\mathbb{K})$ 在上述对应下 C^∞ 同胚．

流形 $G_{1,n}(\mathbb{K})$ 记作 $P^n(\mathbb{K})$, 它是域 \mathbb{K} 上 n 维射影空间．对称 Riemann 空间 $(P^n(\mathbb{K}), g)$ 常称作域 \mathbb{K} 上椭圆空间．
例 6 记正整数 p, q 有 $1 \leq q \leq p$，记 $p+q$ 阶方阵

$$I_{p,q} = \text{diag}(-1, \cdots, -1, 1, \cdots, 1).$$

引进矩阵 Lie 群

$$SU(p, q, \mathbb{K}) = \{a \in M_{p+q}(\mathbb{K}) \mid N(a) = 1, \quad t_a I_{p,q} a = I_{p,q}\}.$$

它的 Lie 代数为

$$\mathfrak{g} = su(p, q, \mathbb{K}) = \{X \in M_{p+q}(\mathbb{K}) \mid T(X) = 0, \quad t_X I_{p,q} + I_{p,q} X = 0\}.$$

取

$$G = SU(p, q, \mathbb{K})^0,$$

在 G 中有对合自同构 σ:

$$\sigma(a) = t_a^{-1}, \quad \forall a \in G.$$

这时

$$G_\sigma = K = \left\{ \begin{pmatrix} a & 0 \\ 0 & \beta \end{pmatrix} \in G \mid a \in U(p, \mathbb{K}), \beta \in U(q, \mathbb{K}) \right\}.$$

而

$$\sigma(X) = -t_X, \quad \forall X \in \mathfrak{g}.$$

于是

$$\mathfrak{m} = \left\{ \begin{pmatrix} 0 & Z \\ t_Z & 0 \end{pmatrix} \in M_{p+q}(\mathbb{K}) \mid Z \in M_{p,q}(\mathbb{K}) \right\},$$

$$\mathfrak{f} = \left\{ \begin{pmatrix} Y & 0 \\ 0 & Z \end{pmatrix} \in su(p, q, \mathbb{K}) \mid Y \in u(p, \mathbb{K}), Z \in u(q, \mathbb{K}) \right\}.$$
\[D_{p,q}(\mathbb{K}) = \{ Z \in M_{p,q}(\mathbb{K}) \mid I_q - \imath \bar{Z} Z > 0 \} . \]

这是右线性空间 \(M_{p,q}(\mathbb{K}) \) 中的开集。下面证明，它们作为 \(C^\infty \) 流形，则 \(G/K \) 和 \(D_{p,q}(\mathbb{K}) \) \(C^\infty \) 同胚。即在这个意义下，可以看作 \(G/K = D_{p,q}(\mathbb{K}) \)。

事实上，任取 \(a \in M_{p+q}(\mathbb{K}) \)，使 \(\bar{a} I_{p,q} a = I_{p,q} \)。将 \(a \) 按 \(p, q \) 行列分块，即记

\[a = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} . \]

则条件可写为

(3.1) \[\bar{\alpha} \alpha - \bar{\gamma} \gamma = I_p, \quad \bar{\delta} \delta - \bar{\beta} \beta = I_q, \quad \bar{\alpha} \beta = \bar{\gamma} \delta . \]

这关系等价于，对任意 \(Z \in M_{p,q}(\mathbb{K}) \)，有

(3.2) \[\bar{\gamma} (\gamma Z + \delta) (\gamma Z + \delta) - \bar{\alpha} (\alpha Z + \beta) (\alpha Z + \beta) = I_q - \bar{Z} Z . \]

当 \(Z \in D_{p,q}(\mathbb{K}) \)，则由 \(I_q - \bar{Z} Z > 0 \) 可知 \(\bar{\gamma} (\gamma Z + \delta) (\gamma Z + \delta) > 0 \)。这证明了 \(\gamma Z + \delta \in M_q(\mathbb{K}) \) 为非异方阵。于是在 \(D_{p,q}(\mathbb{K}) \) 上定义映射

(3.3) \[Z \rightarrow (\alpha Z + \beta) (\gamma Z + \delta)^{-1} . \]

现用 \(\tilde{a} \) 表示，记 \(\tilde{a}(Z) = w \)，由 (3.2) 式可知

\[\bar{\gamma} (\gamma Z + \delta) (I_q - \bar{w} w) (\gamma Z + \delta) = I_q - \bar{Z} Z > 0 , \]

此即 \(I_q - \bar{w} w > 0 \)。所以 \(\tilde{a} : D_{p,q}(\mathbb{K}) \rightarrow D_{p,q}(\mathbb{K}) \)。

易证 \(a \rightarrow \tilde{a} \) 是 Lie 群 \(G \) 的同构，且 \(\{ a \mid a \in G \} \) 为 \(D_{p,q}(\mathbb{K}) \) 上全纯自同构群。下面证它在 \(D_{p,q}(\mathbb{K}) \) 上作用可递。今 \(M_{p,q}(\mathbb{K}) \) 中零矩阵 \(0 \in D_{p,q}(\mathbb{K}) \)。在 \(D_{p,q}(\mathbb{K}) \) 中任取一点 \(Z_0 \)。由 \(I_q - \bar{Z} Z_0 > 0 \)，所以存在 \(M_q(\mathbb{K}) \) 中非异方阵 \(\delta \)，使

\[t\delta (I_q - \bar{Z} Z_0) \delta = I_q . \]

取 \(\beta = Z_0 \delta \in M_{p,q}(\mathbb{K}) \)，则上式给出 \(t\delta - t\bar{\beta} \beta = I_q . \)

另一方面，由 \(I_q - \bar{Z} Z_0 > 0 \) 易证 \(I_q - \bar{Z} Z_0 > 0 \)。所以存在 \(M_p(\mathbb{K}) \) 中非异方阵 \(\alpha \)，使

\[\bar{\alpha} (I_p - Z_0 t\bar{Z}) \alpha = I_p . \]

取 \(\gamma = t\bar{Z} \alpha \in M_{q,p}(\mathbb{K}) \)，则上式给出 \(\bar{\alpha} \alpha - \bar{\gamma} \gamma = I_q . \) 这时

\[\bar{\alpha} \beta = \bar{\alpha} Z_0 \delta = \bar{\gamma} \delta . \]

\[\text{42} . \]
所以
\[a = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in M_{p,q}(K) \]
适合条件 (3.1)，即 \(\bar{a} I_{p,q} a = I_{p,q} \)。所以 \(|a| = 1 \)。于是对 \(a \) 乘一个常数因子 \(\lambda \)，使 \(|\lambda| = 1 \)，则可证它在 \(G \) 中，而且前面讨论不受影响。所以不妨设 \(a \in G \)。证这时 \(\bar{a}(0) = Z_0 \)。这证明了 \(G \) 在 \(D_{p,q}(K) \) 上作用可递。

\(D_{p,q}(K) \) 中点 \(O \) 的逆向子群显然为 \(K \)。由于 \(D_{p,q}(K) \) 为 \(M_{p,q}(K) \) 中连通开集，所以证明了 \(G/K \) 和 \(D_{p,q}(K) \) 作为 \(C^\infty \) 流形，它们 \(C^\infty \) 同胚。在这 \(C^\infty \) 同胚下，\(G/K \) 的 Riemann 度量 \(g \) 变为 \(D_{p,q}(K) \) 的 Riemann 度量，仍用 \(g \) 表示。又 \((D_{p,q}(K), g) \) 中点 \(O \) 的对称 \(\sigma_0 \) 定义为
\[\sigma_0(Z) = -Z, \quad \forall Z \in D_{p,q}(K). \]
这证明了 \((D_{p,q}(K), g) \) 为对称 Riemann 空间。它是 Riemann 对称旁集空间 \((G/K, g) \) 的实现。

特别，\(D_{n,1}(K) \) 是 \(K^{n+1} \) 中单位超球，它通常用 \(D_n(K) \) 表示。Riemann 流形 \((D_n(K), g) \) 通常称为 \(K \) 上双曲空间。

§ 4 半单 Lie 代数

为了下一节有用，在这里叙述半单 Lie 代数的基本概念和结果。读者如要知道详细的叙述，请参考 J. E. Humphrey [10] 或严志达和许以超 [28]。

4.1. 半单 Lie 代数

在这一节，\(g \) 记复或实 Lie 代数。

定义（1）Lie 代数 \(g \) 如果适合 \([g, g] = 0\)，则称为交换 Lie 代数，或称为 Abel Lie 代数。

（2）从 Lie 代数 \(g \) 出发，定义子代数链 \(g^i = [g, g^{i-1}], i = 1, 2, \ldots \)，其中 \(g^0 = g \)。如果存在自然数 \(N \)，使 \(g^N = 0 \)，则 \(g \) 称为幂零 Lie 代数。
(3) 从 Lie 代数 g 出发，定义子代数链 $g^{(i)} = [g^{(i-1)}, g^{(i-1)}], i = 1, 2, \cdots$, 其中 $g^{(0)} = g$. 如果存在自然数 N, 使 $g^{(N)} = 0$, 则 g 称为可解 Lie 代数.

显然, 幂零 Lie 代数必为可解 Lie 代数. 事实上, 用归纳法可证 $g^{(i)} \subseteq g^i$, $i = 1, 2, \cdots$. 反之, 有例子说明可解 Lie 代数不一定幂零. 又交换 Lie 代数是最简单的幂零 Lie 代数.

定义 Lie 代数 g 的最大可解理想 γ 称为 g 的根. Lie 代数 g 的根 $\gamma = (0)$, 则 g 称为半单 Lie 代数.

根和半单 Lie 代数的重要性在于有 Levi 分解; 即任一 Lie 代数 g 必为根 γ 和一个半单子代数 g_0 的空间直接和 $g = \gamma + g_0$. 且若 g 有两个 Levi 分解 $g = \gamma + g_0 = \gamma + g_1$, 则半单子代数 g_0, g_1 互相共轭, 即在内自同构下互相同构.

对 Lie 群 G, 我们也可以引进交换 (即称为 Abel) 的, 幂零的, 可解的, 根以及半单等概念. 例如 Lie 群 G 的最大可解正规子群称为根. 当根为离散子群 (即零维 Lie 群) 时, 则 Lie 群 G 称为半单的. 所以在连通 Lie 群 G 的情形, 它交换, 幂零, 可解, 半单分别等价于它的 Lie 代数 g 交换, 幂零, 可解, 半单.

Lie 代数结构, 最清楚的是所谓约化 Lie 代数. 它有几种等价定义. 我们用它的结构来定义.

定义 如果 Lie 代数 g 是它的中心 z 和一个半单理想 γ 的直接和, $g = \gamma \oplus z$, 则 g 称为约化 Lie 代数.

这时, 显然 Lie 代数 g 的换位子代数 $g' = [g, g]$ 就是半单理想 γ.

显然, 半单 Lie 代数是约化 Lie 代数, 交换 Lie 代数也是约化 Lie 代数.

定理 4.1 紧 Lie 群的 Lie 代数是约化的.

证 由于紧 Lie 群的附属表示完全可约, 所以它的 Lie 代数的附属表示完全可约. 由于附属表示的不变子空间为理想. 这就证明了定理.

在第一章, §2, 引理 2.2 前已定义了 Lie 代数的 Killing 型.
$B(X, Y)$. 易证它有下面初等性质：

(4.1) $B(\alpha(X), \alpha(Y)) = B(X, Y)$, $\forall X, Y \in \mathfrak{g}$

对一切 \mathfrak{g} 的自同构 α 成立；

(4.2) $B([X, Y], Z) + B(Y, [X, Z]) = 0$, $\forall X, Y, Z \in \mathfrak{g}$,

这性质称为不变性。由 Killing 型的不变性，立即使证 \mathfrak{g} 的理想 \mathfrak{h} 关于 Killing 型的正交补 $\mathfrak{h}^\perp = \{X \in \mathfrak{g} | B(X, \mathfrak{h}) = 0\}$ 仍为理想。

而且 Killing 型限制在理想 \mathfrak{h} 上为 \mathfrak{h} 的 Killing 型。再对 Lie 代数 \mathfrak{g} 的交换理想 \mathfrak{a}，则 \mathfrak{a} 在 Killing 型的核中，即 $B(\mathfrak{a}, \mathfrak{a}) = 0$。这里 $B(\mathfrak{a}, \mathfrak{a}) = 0$ 表示 $B(X, Y) = 0$, $\forall X \in \mathfrak{a}$, $Y \in \mathfrak{a}$。

由半单 Lie 代数的定义可知 Lie 代数 \mathfrak{g} 半单当且仅当 \mathfrak{g} 没有非零交换理想。

定理 4.2 (Cartan 判别法) Lie 代数 \mathfrak{g} 半单当且仅当它的 Killing 型 B 不退化。

此定理的充分性由上面说明显然可证，必要性证明比较复杂。

定义 Lie 代数 \mathfrak{g} 的维数如果大于 1，且它的非零理想只有 \mathfrak{g} 本身，则 \mathfrak{g} 称为单 Lie 代数。

从定理 4.2，立即可证定理 4.3 Lie 代数 \mathfrak{g} 半单当且仅当 \mathfrak{g} 是单理想子代数的直接和。这时半单 Lie 代数的单理想子代数只能是直接和因子，所以半单 Lie 代数的上述分解不计次序唯一。

熟知，复单 Lie 代数在同构意义下的分类问题已由 É. Cartan 解决。它有 A_n, B_n, C_n, D_n 四大类，以及 G_2, F_4, E_6, E_7, E_8 这五个例外单 Lie 代数。列表如下（表见下页）。

在表 1 中，\mathcal{L} 记 \mathbb{R} 上 Cayley-Dickson 代数，\mathcal{J} 记 \mathbb{R} 上 3 阶 Hermite 方阵构成的 Jordan 代数，\mathcal{L}^c 及 \mathcal{J}^c 分别表示 \mathcal{L} 及 \mathcal{J} 的复化，又对代数 A, $\text{Aut} A$ 记 A 的自同构群。

关于实单 Lie 代数分类问题，也已经解决，这在 4.2 中加以叙述。在这一段最后，给出定理 Lie 代数 \mathfrak{g} 的微分 D 是 \mathfrak{g} 上线性变换，它适合

$[DX, Y] + [X, DY] = D([X, Y])$, $\forall X, Y \in \mathfrak{g}$.
表 II 复单 Lie 代数分类表

<table>
<thead>
<tr>
<th>Cartan 的符号</th>
<th>复 形 式</th>
<th>紧 形 式</th>
<th>维 数</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_n, (n \geq 1)$</td>
<td>$SL(n+1, \mathbb{C})$</td>
<td>$SU(n+1)$</td>
<td>$(n+1)^2 - 1$</td>
</tr>
<tr>
<td>$B_n, (n \geq 2)$</td>
<td>$SO(2n+1, \mathbb{C})$</td>
<td>$SO(2n+1)$</td>
<td>$2n^2 + n$</td>
</tr>
<tr>
<td>$C_n, (n \geq 3)$</td>
<td>$Sp(n, \mathbb{C})$</td>
<td>$Sp(n)$</td>
<td>$2n^2 + n$</td>
</tr>
<tr>
<td>$D_n, (n \geq 4)$</td>
<td>$SO(2n, \mathbb{C})$</td>
<td>$SO(2n)$</td>
<td>$2n^2 - n$</td>
</tr>
<tr>
<td>G_2</td>
<td>$Aut \mathfrak{L}$</td>
<td>$Aut \mathfrak{L}$</td>
<td>14</td>
</tr>
<tr>
<td>F_4</td>
<td>$Aut \mathfrak{F}$</td>
<td>$Aut \mathfrak{F}$</td>
<td>52</td>
</tr>
<tr>
<td>E_6</td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>E_7</td>
<td></td>
<td></td>
<td>133</td>
</tr>
<tr>
<td>E_8</td>
<td></td>
<td></td>
<td>248</td>
</tr>
</tbody>
</table>

表中下脚码表示 Lie 代数的秩（参考第四章，§ 1）。

由此可知，Lie 代数 \mathfrak{g} 的附属表示 $ad \mathfrak{g}$ 中任一元 $ad Z, \forall Z \in \mathfrak{g}$ 都是微分，这种微分称为内微分。可以证明

命题 4.1 半单 Lie 代数的微分必为内微分。即对任一微分 D，存在 $X \in \mathfrak{g}$，使 $ad X = D$。

4.2 实形式

定义 设 \mathfrak{g} 为复 Lie 代数，记 $\mathfrak{g}_\mathbb{R}$ 为 \mathfrak{g} 视作复数域上线性空间，自然 $\mathfrak{g}_\mathbb{R}$ 为实 Lie 代数。$\mathfrak{g}_\mathbb{R}$ 的子代数 \mathfrak{g}_0 如果合适

$$\mathfrak{g}_\mathbb{R} = \mathfrak{g}_0 + \sqrt{-1} \mathfrak{g}_0, \quad \mathfrak{g}_0 \cap \sqrt{-1} \mathfrak{g}_0 = (0)$$

则实 Lie 代数 \mathfrak{g}_0 称为复 Lie 代数 \mathfrak{g} 的实形式。

显然，任一实 Lie 代数的复化为复 Lie 代数。所以这时 \mathfrak{g}_0 的复化 $\mathfrak{g}_0^c = \mathfrak{g}$。因此 \mathfrak{g} 称为 \mathfrak{g}_0 的复化。

例如 对复 Lie 代数 $\mathfrak{g} = gl(n, \mathbb{C})$，则 $gl(n, \mathbb{R})$ 及 $u(n)$ 都是 \mathfrak{g} 的实形式。其中 $gl(n, \mathbb{R})$ 为 Lie 群 $GL(n, \mathbb{R})$ 的 Lie 代数，又 $u(n)$ 为 Lie 群 $U(n)$ 的 Lie 代数（参见表 1）。

定义 设 \mathfrak{g} 为复 Lie 代数，\mathfrak{g} 到自身的映射 σ 称为共轭，如果

σ 结构保存，$[\sigma (X), \sigma (Y)] = \sigma ([X, Y])$ 对 $\forall X, Y \in \mathfrak{g}$。
对复 Lie 代数 \(g \)，记 \(g_0 \) 为 \(g \) 的一个实形式，由
\[
\mathfrak{g}_\mathbb{R} = g_0 + \sqrt{-1} g_0, \quad g_0 \cap \sqrt{-1} g_0 = \{0\},
\]
在 \(\mathfrak{g}_\mathbb{R} \) 上定义映射 \(\sigma \):
\[
X + \sqrt{-1} Y \mapsto X - \sqrt{-1} Y, \quad \forall X, Y \in g_0.
\]
显然，\(\sigma \) 为 \(\mathfrak{g}_\mathbb{R} \) 的对合自同构。作为 \(g \) 的映射，显然 \(\sigma \) 为共轭。由此可见，一个实形式 \(g_0 \) 对应了一个共轭 \(\sigma \)。反之，任给一个复 Lie 代数 \(g \) 的共轭 \(\sigma \)，作
\[
g_0 = \{ X \in g \mid \sigma(X) = X \}.
\]
不难证明 \(g_0 \) 为实形式，且按照上面造的共轭就是 \(\sigma \)。所以证明了

命题 4.2 设 \(g \) 是复 Lie 代数，则在 \(g \) 的实形式和共轭间存在一个一一对应，实形式 \(g_0 \) 对应的共轭 \(\sigma \) 和 \(g_0 \) 间有如下关系：
\[
g_0 = \{ X \in g \mid \sigma(X) = X \}.
\]

命题 4.3 设 \(g_0 \) 为复半单 Lie 代数 \(g \) 的实形式，则 \(g_0 \) 半单当且仅当 \(g \) 半单。

定理 4.4 (Weyl) 设 \(g \) 为复半单 Lie 代数，则以 \(g \) 为 Lie 代数的任一连通 Lie 群紧。

下面定理在实半单 Lie 代数的分类问题中起了本质的作用。

定理 4.5 (Weyl, Cartan) 复半单 Lie 代数 \(g \) 有紧实形式 \(g_0 \)。\(g \) 中两个紧实形式互相共轭，即在 \(g \) 的附属群 \(Adg \) 中元素作用下互相同构。

又 \(g \) 为单 Lie 代数当且仅当 \(g_0 \) 为单 Lie 代数。

记 \(g_0 \) 为实半单 Lie 代数，设 \(g_0 \) 有对合自同构 \(\sigma \)。记 \(g_0 \) 关于 \(\sigma \) 的标准分解为
(4.3) \[g_0 = \mathfrak{f} + \mathfrak{p}. \]

由 (4.1), \(B(\sigma(X), \sigma(Y)) = B(X, Y) \), 所以可证
\[B(\mathfrak{f}, \mathfrak{p}) = 0. \]

由于 Killing 型 \(B \) 非退化，所以这证明了 \(\mathfrak{p} = \mathfrak{f}^\perp \). 因此标准分解 (4.3) 由 \(\mathfrak{f} \) 唯一决定.

定义 实半单 Lie 代数 \(g_0 \) 的对合自同构 \(\sigma \) 称为 Cartan 对合，如果 \(g_0 \) 的 Killing 型在 \(\mathfrak{f} \) 上定负，在 \(\mathfrak{p} \) 上定正．这时，我们称 \((g_0, \sigma)\) 为 Cartan 对合．而 (4.3) 称为 Cartan 分解．又 \(\mathfrak{f} \) 称为关于 Cartan 分解的特征子代数．

由于 \(g_0 \) 的 Killing 型 \(B \) 在 \(\mathfrak{p} \) 上定正，所以在 \(\mathfrak{p} \) 上是内积，利用 Killing 型不变性，立即可证 \(B|\mathfrak{p} \) 在 \(\mathfrak{f} \) 的附属作用下不变，即 \((g_0, \sigma, B|\mathfrak{p})\) 为 Riemann 对称 Lie 代数．

定理 4.6 (Cartan) 设 \(g_0 \) 为实半单 Lie 代数，设 \(g_0 \) 非紧．则
(a) \(g_0 \) 上存在 Cartan 对合；
(b) 两个 Cartan 对合在 \(g_0 \) 的内自同构（即 \(Ad(g_0) \) 中元素）下互相共轭．

(c) Cartan 对 \((g_0, \sigma)\) 的特征子代数 \(\mathfrak{f} \) 对应附属群 \(G = Ad(g_0) \) 中的最大紧子群 \(K \)．且商空间 \(G/K \) 同胚于
\[\mathbb{R}^N \quad (N = \dim G/K), \]

所以 \(G/K \) 单连通．

下面回过来描述复半单 Lie 代数 \(g \) 的实形式．记 \(g^*_\mathbb{R} \) 为 \(g \) 的紧形式．记 \(\theta \) 为 \(g^*_\mathbb{R} \) 的对合自同构，
\[g^*_\mathbb{R} = \mathfrak{f} + \mathfrak{m} \]
为 \(g^*_\mathbb{R} \) 关于 \(\theta \) 的标准分解．在 \(g^*_\mathbb{R} \) 中考虑实子空间
\[g_0 = \mathfrak{f} + \sqrt{-1} \mathfrak{m}, \]

易证，\(g_0 \) 也是实形式，且上述分解为 \(g_0 \) 的 Cartan 分解．

定理 4.7 (Cartan, Gantmacher) 记号如上，我们有
a) 对 \(g \) 的任一实形式 \(g_0 \)，存在紧形式 \(g^*_\mathbb{R} \) 的对合自同构 \(\theta \)，使得由 \(\theta \) 决定的实形式 \(g_0 \) 和 \(g_0 \) 共轭．

b) 对紧形式 \(g^*_\mathbb{R} \) 的两个对合自同构 \(\theta, \theta' \)，则 \(g_0 \cong g_0 \) 当且仅
当 θ 和 θ' 在 \mathfrak{g}_0 的自同构下互相共轭时，

用这个定理，可以对实单 Lie 代数在同构下进行分类。假设 \mathfrak{g}_0 为实单 Lie 代数，\mathfrak{g} 为 \mathfrak{g}_0 的复化，\mathfrak{g} 为复半单 Lie 代数（命题 4.3），对于 \mathfrak{g} 而言，出现两种情形。

(1) \mathfrak{g} 是单 Lie 代数。

这时，按照定理 4.7，可对 \mathfrak{g}_0 进行分类，\mathfrak{g} 的实形式的同构类一一对应于 \mathfrak{g}_0 的紧形式 \mathfrak{g}_0^k 的自同构群 $\text{Aut}(\mathfrak{g}_0^k)$ 中阶元素的共轭类。我们将典型群情形非紧实单 Lie 代数列入表 III。另外，还有 12 个例外型非紧实单 Lie 代数，就不一一写出了。

<table>
<thead>
<tr>
<th>Cartan 的符号</th>
<th>非紧实单 Lie 代数</th>
<th>特征子代数</th>
<th>复形式</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>$sl(n+1, \mathbb{R})$</td>
<td>$su(n+1, \mathbb{R})$</td>
<td>A_n</td>
</tr>
<tr>
<td>AII</td>
<td>$sl(n, \mathbb{H})$</td>
<td>$sp(n)$</td>
<td>A_{2n-1}</td>
</tr>
<tr>
<td>AIII</td>
<td>$su(p, q, \mathbb{C})$</td>
<td>$su(p) + su(q)$</td>
<td>A_{p+q-1}</td>
</tr>
<tr>
<td>BI</td>
<td>(p, q, \mathbb{R})</td>
<td>$so(p) - so(q), p + q = 2n + 1$</td>
<td>B_n</td>
</tr>
<tr>
<td>BII</td>
<td>$(1, 2n, \mathbb{R})$</td>
<td>$so(2n)$</td>
<td>B_n</td>
</tr>
<tr>
<td>CI</td>
<td>$sp(n, \mathbb{R})$</td>
<td>$u(n)$</td>
<td>C_n</td>
</tr>
<tr>
<td>CII</td>
<td>(p, q, \mathbb{H})</td>
<td>$sp(q) + so(q)$</td>
<td>C_{p+q}</td>
</tr>
<tr>
<td>DI</td>
<td>(p, q, \mathbb{R})</td>
<td>$so(p) + so(q), p + q = 2n$</td>
<td>D_n</td>
</tr>
<tr>
<td>DII</td>
<td>$(1, 2n-1, \mathbb{R})$</td>
<td>$so(2n-1)$</td>
<td>D_n</td>
</tr>
<tr>
<td>DIII</td>
<td>$so(n, \mathbb{H})$</td>
<td>$u(2n)$</td>
<td>D_n</td>
</tr>
</tbody>
</table>

(2) \mathfrak{g} 不是单 Lie 代数。

这时存在复单 Lie 代数 \mathfrak{g}_1，使 $\mathfrak{g}_1^k \cong \mathfrak{g}_0$。而且如果有两个复单 Lie 代数 $\mathfrak{g}_1, \mathfrak{g}_2$，则 $\mathfrak{g}_1^k \cong \mathfrak{g}_2^k \cong \mathfrak{g}_0$，当且仅当 $\mathfrak{g}_1 \cong \mathfrak{g}_2$。因此具有复化为非单 Lie 代数的实单 Lie 代数的同构类一一对应于相应复单 Lie 代数的同构类。

这里记 $\mathbb{K} = \mathbb{R}, \mathbb{C}$ 或 \mathbb{H}，$\mathfrak{gl}(n, \mathbb{K})$ 为 \mathbb{K} 上所有 n 阶方阵构成的集合。又对四元数 $x = x_0 + x_1 i + x_2 j + x_3 k, x_0, x_1, x_2, x_3 \in \mathbb{R}$，
取 $\bar{x} = x_0 - x_1 i - x_2 j - x_3 k$, $x^* = x_0 + x_1 i - x_2 j + x_3 k$. 于是

$$\mathfrak{sl}(n, \mathbb{K}) = \{a \in \mathfrak{gl}(n, \mathbb{K}) | \text{Tr}a = 0\},$$

$$\mathfrak{so}(p, q, \mathbb{K}) = \{a \in \mathfrak{sl}(p + q, \mathbb{K}) | i^* a I_{p, q} + I_{p, q} a = 0\},$$

$$\mathfrak{so}(n, \mathbb{K}) = \mathfrak{so}(n, 0, \mathbb{K}),$$

$$\mathfrak{u}(p, q, \mathbb{K}) = \{a \in \mathfrak{gl}(p + q, \mathbb{K}) | i^* a I_{p, q} + I_{p, q} a = 0\},$$

$$\mathfrak{u}(n, \mathbb{K}) = \mathfrak{u}(n, 0, \mathbb{K}),$$

$$\mathfrak{sp}(n, \mathbb{K}) = \{a \in \mathfrak{gl}(2n, \mathbb{K}) | i^* a J + J a = 0\},$$

其中

$$I_{p, q} = \text{diag}(-I_p, I_q), \quad J = \begin{pmatrix} O_n & -I_n \\ I_n & O_n \end{pmatrix}.$$

实单 Lie 代数的分类理论首先由 É. Cartan 在 1914 完成的。后面许多数学家作整理与简化工作，它们是

严志达，实单纯 Lie 代数分类及其角图表示，科学记录 7 (1959), 213~217.

§ 5 对称 Riemann 空间的结构

在这一节研究 Riemann 对称 Lie 代数的代数结构，且证明单连通对称 Riemann 空间是 Euclid 空间和一些不可约对称 Riemann 空间的拓扑积。

5.1. 第一分解定理

引理 5.1 设 $(\mathfrak{g}, \sigma, Q)$ 为有效 Riemann 对称 Lie 代数，$\mathfrak{g} = \mathfrak{r} + \mathfrak{m}$ 为关于 σ 的 \mathfrak{g} 的标准分解，则

a) \mathfrak{r} 的 Killing 型 B_r 是半负定的。
b) g 的 Killing 型 B 在 \mathfrak{f} 上的限制 $B|\mathfrak{f}$ 是负定的。

证 利用第一章, 引理 2.2. 今对自然映射 $\pi: g \to g/\mathfrak{f}$, 它诱导了线性同构 $m \cong g/\mathfrak{f}$. 于是 m 上适合条件

$$Q(ad_m(X)u, v) + Q(u, ad_m(X)v) = 0, \quad \forall u, v \in m, \quad X \in \mathfrak{f}$$

的内积 Q, 在此同构下变为 g/\mathfrak{f} 上内积 Q. 显然 m 上线性变换 $ad_m(X)$ 在此同构下, 变为 g/\mathfrak{f} 上线性变换 $ad_{g/\mathfrak{f}}(X), \forall X \in \mathfrak{f}$. 因此 g/\mathfrak{f} 上内积 Q 适合第一章, 引理 2.2 的条件. 所以证明了 B_1 半负定, $B|\mathfrak{f}$ 负定. 引理证完.

定义 设 (g, σ, Q) 为有效 Riemann 对称 Lie 代数, $g = \mathfrak{f} + m$是关于 σ 的标准分解, 如果 $[m, m] = 0$, 则 (g, σ, Q) 称为 Euclid 型的; 如果 g 是半单 Lie 代数, 则 (g, σ, Q) 称为半单型的; 如果 g 是紧半单 Lie 代数, 则 (g, σ, Q) 称为紧半单型的; 如果 g 是非紧半单 Lie 代数, 且 σ 为 Cartan 对合, 则 (g, σ, Q) 称为非紧半单型的.

引理 5.2 如果 (g, σ, Q) 是一个半单型有效 Riemann 对称 Lie 代数, 则 $\mathfrak{f} = [m, m]$.

证 作 $\mathfrak{h} = [m, m] + m$, 显然 \mathfrak{h} 为 g 的理想, \mathfrak{h} 中关于 g 的 Killing 型 B 的正交补记作 \mathfrak{h}^\perp, 自然也是 g 的理想. 由 $m^1 = \mathfrak{f}$ 可知 $\mathfrak{h}^\perp \subset \mathfrak{f}$. 由有效性, 只有 $\mathfrak{h}^\perp = (0)$, 即 $\mathfrak{h} = g$. 再由 $[m, m] \subset \mathfrak{f}$, 立即可得 $\mathfrak{f} = [m, m]$. 引理证完.

设 Lie 代数 g 分解为理想 $\mathfrak{g}_1, \ldots, \mathfrak{g}_s$ 的直接和 $g = g_1 \oplus \cdots \oplus g_s$. 设 g_i 为 Riemann 对称 Lie 代数 $(g_i, \sigma_i, Q_i), i = 1, 2, \ldots, s$. 定义 g 到自身的映射 $\sigma: \sigma(\Sigma X_i) = \Sigma \sigma_i(X_i), \forall X_i \in g_i$, 易证 σ 为 g 的对合自同构. 对 g_i 关于 σ_i 的标准分解 $g_i = \mathfrak{f}_i + m_i$, 易证设 $\mathfrak{f} = \Sigma \mathfrak{f}_i, m = \Sigma m_i$, 则 $g = \mathfrak{f} + m$ 为 g 关于 σ 的标准分解. 任取 $X, Y \in m$, 则 $X = \Sigma X_i, Y = \Sigma Y_i, X_i, Y_i \in m_i$. 定义

$$Q(X, Y) = \Sigma Q_i(X_i, Y_i), \forall X, Y \in m.$$

易证这时 (g, σ, Q) 为 Riemann 对称 Lie 代数.

定义 在 Lie 代数 g 的直接和分解 $g = \sum \mathfrak{g}_i$ 中, 设 g_i 为
Riemann对称 Lie 代数 \((g_i, \sigma_i, Q_i)\)，如果按上面构造出 Riemann对称 Lie 代数 \((g, \sigma, Q)\)。则 \((g, \sigma, Q)\) 称为 \((g_i, \sigma_i, Q_i)\) \(i = 1, 2, \ldots, s\) 的直接和，记作

\[(g, \sigma, Q) = (g_1, \sigma_1, Q_1) \oplus \cdots \oplus (g_s, \sigma_s, Q_s).\]

定理 5.1 设 \((g, \sigma, Q)\) 为有效 Riemann 对称 Lie 代数，则 \((g, \sigma, Q)\) 可唯一地分解为直接和

\[(g, \sigma, Q) = (g_0, \sigma_0, Q_0) \oplus (g_1, \sigma_1, Q_1),\]

其中 \((g_0, \sigma_0, Q_0)\) 为 Euclid 型有效 Riemann 对称 Lie 代数，而 \((g_1, \sigma_1, Q_1)\) 为半单型有效 Riemann 对称 Lie 代数。而且设 \(g_0\) 关于 \(\sigma_0\) 的标准分解为 \(g_0 = \mathfrak{f}_0 + \mathfrak{m}_0\)，则 \(\mathfrak{m}_0\) 为 \(g\) 的最大交换理想。

证 先证存在性，再证唯一性。

记 \(g = \mathfrak{f} + \mathfrak{m}\) 为 \(g\) 关于 \(\sigma\) 的标准分解，\(B\) 为 \(g\) 的 Killing 型。

存在性证明，分下面几步。

(1) 记 \(m_0 = \{X \in \mathfrak{m} | [X, \mathfrak{m}] = 0\}\)。则 \(m_0\) 为 \(g\) 的最大交换理想。

证 \(g\) 中任取交换理想 \(a\)，自然 \(B(a, g) = 0\)。任取 \(Z \in a\)，则 \(Z = X + Y, X \in \mathfrak{f}, Y \in \mathfrak{m}\)。由于 \(B(\mathfrak{f}, \mathfrak{m}) = 0\)。所以 \(B(X, X) = B(Y, X) = B(Z, X) = 0\)，由引理 5.1，\(B|\mathfrak{f}\) 定负，所以推出 \(X = 0\)。即 \(Z \in \mathfrak{m}\)，或 \(a \subset \mathfrak{m}\)。

再 \([a, \mathfrak{m}] \subset \mathfrak{a} \cap [\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{m} \cap \mathfrak{f} = 0\)，所以 \(a \subset m_0\)。所以只要证 \(m_0\) 为交换理想，则 \(m_0\) 为 \(g\) 的最大交换理想。

今任取 \(X \in \mathfrak{f}, Y \in \mathfrak{m}\)，则 \([X, Y] \in \mathfrak{f}, m_0 \subset \mathfrak{m}\)，而 \([Z, [X, Y]] = -[Y, [Z, X]] - [X, [Y, Z]] = 0\)，所以证明了 \([X, Y] \in m_0\)，即 \([g, m_0] = [\mathfrak{f}, m_0] + [\mathfrak{m}, m_0] = [\mathfrak{f}, m_0] \subset m_0\)。

又 \([m_0, m_0] \subset \mathfrak{m}, m_0 = 0\)，所以证明了 \(m_0\) 为交换理想。

(2) \(m_0 = \{X \in \mathfrak{m} | B(X, g) = 0\} = \{X \in \mathfrak{m} | B(X, \mathfrak{m}) = 0\}\)。

证 今 \(X \in \mathfrak{m}\)，\(g = \mathfrak{f} + \mathfrak{m}\)，由 \(B(m, \mathfrak{f}) = 0\)，所以 \(B(X, g) = B(X, m) + B(X, \mathfrak{f}) = B(X, m)\)。因此只要证

\(m_0 = \{X \in \mathfrak{m} | B(X, g) = 0\}\)

就够了。首先，由 \(m_0\) 为交换理想，所以 \(B(m_0, g) = 0\)。这证明了
\[
m_0 \subset \{ X \in m \mid B(X, g) = 0 \}.
\]
下面证反包含．今任取 \(X \in m \)，使 \(B(X, g) = 0 \)。于是任取 \(Y \in m \)，
\(Z \in f \) 有
\[
[X, Y] \in f, \text{ 故 } B([X, Y], Z) = B(X, [Y, Z]) = 0.
\]
但由引理 5.1，\(B|f \) 定负，所以证明了 \([X, Y] = 0, \forall Y \in m \)。即
\(X \in m_0 \)。这证明了 \(m_0 = \{ X \in m \mid B(X, g) = 0 \} \).

(3) 现在给出 \(g \) 的分解式。
记
\[
m_1 = \{ X \in m \mid Q(X, m_0) = 0 \}.
\]
由于 \(Q \) 为 \(m \) 的内积，所以有空间直接和
\[
m = m_0 + m_1, \text{ 且 } m_0 \cap m_1 = 0.
\]
这时，自然有 \([f, m_0] \subset m_0 \)。又由 \(Q \) 在 \(ad_m \) 下不变，故有 \([f, m_1] \subset m_1 \)。而 \([m_1, m_1] \subset f \)。作
\[
\begin{align*}
(5.1) & \quad g_1 = [m_1, m_1] + m_1, \\
(5.2) & \quad g_0 = \{ X \in g \mid B(X, g_1) = 0 \}.
\end{align*}
\]
设 \(g_0 \) 在 \(f \) 的投影为 \(f_0 \)，则有空间直接和
\[
(5.3) \quad g_0 = f_0 + m_0.
\]
事实上，由 (2)，\(m_0 \) 为 \(B \) 在 \(g \) 中的核。所以 \(m_0 \subset g_0 \)。问题化为证
\(X \in g_0 \)，\(X = Y + Z \)，\(Y \in f_0 \)，\(Z \in m \)，则 \(Z \in m_0 \)。利用 \(B(m_0, g) = 0 \)，
\(B(f, m) = 0 \)，所以由 \(g_0 \) 之定义
\[
B(Z, g) = B(Z, m) = B(Z, m_1) = B(X - Y, m_1) = 0.
\]
这证明了 \(Z \in m_0 \)。即 (5.2) 成立。

现在证 \(g_1 \) 为理想。事实上，由 \([m, m_0] = 0 \)，有 \([m_0, m_1] = 0 \)。
即 \([m, m_1] = [m_1, m_1] \)。因此
\[
[g, g_1] = [f + m, [m_1, m_1] + m_1]
= [f, [m_1, m_1]] + [f, m_1] + [m, [m_1, m_1]]
+ [m, m_1] \subset [m_1, m_1] + m_1 = g_1.
\]
今 \(g_1 \) 为理想，所以 \(g_0 \) 也是理想。又由 \(B \) 之核在 \(g_0 \) 中，所以 \(B|g_1 \)
非退化。由 \(g_1 \) 为理想，所以 \(B|g_1 \) 即 \(g_1 \) 之 Killing 型。由于它非退化，即 \(g_1 \) 半单。另一方面，由 \(g_0 \supset m_0 \) 之定义，所以 \(g \) 有理想直接和
\(g = g_0 + g_1 \)。且 \(g_0 = \{ X \in g \mid [X, g_1] = 0 \} \).

* 53 *
今 m_0 是 σ 不变的，所以 m_1 是 σ 不变的。由式(5.1)，g_1 是 σ 不变的，由式(5.2)，g_0 也是 σ 不变的，于是取 $g_0 = \sigma_0, g_1 = \sigma_1, Q|m_0 = Q_0, Q|m_1 = Q_1$。则不难证明 $(g_0, \sigma_0, Q_0), (g_1, \sigma_1, Q_1)$ 都是 Riemann 对称 Lie 代数，且
\[(g, \sigma, Q) = (g_0, \sigma_0, Q_0) \oplus (g_1, \sigma_1, Q_1)\]

利用 g_0, g_1 关于 g 的 Killing 型 B 互相正交，所以由 g 为有效 Riemann 对称 Lie 代数，立即可以推出 $(g_0, \sigma_0, Q_0), (g_1, \sigma_1, Q_1)$ 都是有效 Riemann 对称 Lie 代数，至此存在性证完。

下面证唯一性。

如果 (g, σ, Q) 另有一个分解
\[(g, \sigma, Q) = (g'_0, \sigma'_0, Q'_0) \oplus (g'_1, \sigma'_1, Q'_1),\]
其中 (g'_0, σ'_0, Q'_0) 为 Euclid 型，(g'_1, σ'_1, Q'_1) 为半单型，记 g'_0 关于 σ'_0 的标准分解为 $g'_0 = t'_0 + m'_0$。显然只要证 m'_0 为 g 的最大交换理想，参考存在性证明便证明了唯一性。

今已知 $[g_0, g'_1] = 0, [t'_0, m'_0] \subset m'_0, [m'_0, m'_0] = 0$。所以 m'_0 为交换理想，再任取 g 的交换理想 a。于是 $[g, g'_1] \subset a \cap g'_1$ 是 g'_1 的交换理想。但 g'_1 半单，所以 $[g, g'_1] = 0$。这证明了 $a \subset g'_0$。另一方面，由存在性证明(1)的第一段，可证 $a \subset g$。所以 $a \subset m \cap g'_0 = m'_0$。这证明了 m'_0 为 g 的最大交换理想，所以证明了唯一性。定理证完。

定义 连通对称 Riemann 空间 (M, g) 称为半单型的，如果 (M, g) 等度量同构于 Riemann 对称旁集空间 $(G/K, g)$，使得 G 为连通半单 Lie 群。

定理 5.2 单连通，连通对称 Riemann 空间 (M, g) 等度量同构于直乘积
\[(M, g) \cong (\mathbb{R}^n, g_0) \times (M_1, g_1),\]
其中 (\mathbb{R}^n, g_0) 为 Euclid 空间，(M_1, g_1) 为半单型对称 Riemann 空间。上述分解还唯一。

证 我们可以将 (M, g) 用有效 Riemann 对称旁集空间 $(G/K, g)$ 来表示，且可设 G 为单连通 Lie 群，使 G 在 G/K 上作...
用几乎有效。相应 \((G/K, g)\)，便定义了一个有效 Riemann 对称 Lie 代数 \((g, \sigma, Q)\)。由定理 5.1，有直接和分解

\[(g, \sigma, Q) = (g_0, \sigma_0, Q_0) \oplus (g_1, \sigma_1, Q_1).\]

由于 \(G\) 单连通，由 \(g = g_0 \oplus g_1, f = f_0 \oplus f_1\)，于是相应有直乘积分解

\[G = G_0 \times G_1, \quad K = K_0 \times K_1.\]

所以推出 Riemann 空间的直乘积分解

\[(G/K, g) = (G_0/K_0, g_0) \times (G_1/K_1, g_1).\]

其中 \((G_1/K_1, g_1)\) 为半单型 Riemann 对称旁集空间。余下要证 \((G_0/K_0, g_0)\) 等度量同构于 Euclid 空间。

今 \(g_0\) 关于 \(\sigma_0\) 的标准分解为 \(g_0 = f_0 \oplus m_0\)，其中 \(m_0\) 为最大交换理想，\(f_0\) 为子代数。由 \(G_0\) 单连通，所以 \(G_0\) 有半直乘积分解 \(G_0 = K_0 M_0\)，其中 \(K_0, M_0\) 之 Lie 代数分别为 \(f_0, m_0\)，由 \(m_0\) 可交换，所以 \(M_0\) 为单连通交换子群。因此，记 \(\dim m_0 = n\)，则作为 Lie 群，

\[M_0 \cong \mathbb{R}^n.\]

而 \(G_0/K_0\) 上 \(G_0\) 不变 Riemann 度量 \(g_0\) 诱导了 \(\mathbb{R}^n\) 上平移不变 Riemann 度量，即为 Euclid 度量，仍用 \(g_0\) 表示。所以

\[(G_0/K_0, g_0)\] 等度量同构于 Euclid 空间 \((\mathbb{R}^n, g_0)\).

至此证明了分解的存在性。关于分解的唯一性，由定理 5.1 的唯一性立可得。定理证完。

5.2. 半单型对称 Riemann 空间

定理 5.8 设 \((M, g)\) 为半单型对称 Riemann 空间，\(I(M, g)\) 为 \((M, g)\) 的等度量变换群。设连通 Lie 群 \(G\) 在 \(M\) 上作用有效，使 \((M, g)\) 可表为 Riemann 对称旁集空间 \((G/K, g)\)。则 \(G\) 由 \((M, g)\) 唯一决定，确切地说，\(G\) 必须等于 \(I(M, g)\) 的单位分量

\[G' = I(M, g)^0,\]

证 由假设，\((M, g)\) 为半单型对称 Riemann 空间，它可表为 Riemann 对称旁集空间 \((G/K, g)\)。由定理 2.1，对

\[G' = I(M, g)^0,\]

它又可表为 Riemann 对称旁集空间 \((G'/K', g)\)。由条件，\(G \subset G'\)。
又可取 K 为 G 中关于 M 的定点 O 的迷向子群，K' 为 G' 中关于
同一定点 O 的迷向子群，所以 $K \subset K'$. 于是为了证明定理，只要
证 G 及 G' 中有一个半单，那么另一个必半单，且 $G = G'$.

记 σ_0 为 M 中点 O 的对称. 由定理 2.1, G' 上有对合自同构
σ': $g \to \sigma_0 a \sigma_0, \forall a \in G'$. 由式 (1.4), σ' 诱导了 G 的对合自同构
σ, 使得对称旁集空间 G/K 由 σ 所定义. 记由 $(G/K, g)$ 及
$(G'/K', g')$ 分别决定的 Riemann 对称 Lie 代数为 (g, σ, Q) 及
(g', σ', Q'). 则有 $g \subset g'$, $\sigma = \sigma'|_g$, 记 g 及 g' 分别关于 σ 及 σ' 的
标准分解为 $g = \mathfrak{f} + m$, $g' = \mathfrak{f}' + m'$, 则有 $\mathfrak{f} \subset \mathfrak{f}'$, $m \subset m'$, 但是
$$\dim m' = \dim G'/K' = \dim M = \dim G/K = \dim m,$$
所以证明了 $m = m'$.

记 m_0 及 m_0' 分别为 g 及 g' 的最大交換理想. 然而由定理 5.1
的证明可知
$$m_0 = \{ X \in m | [X, g] = 0 \} = \{ X \in m | [X, m] = 0 \}.$$ 但是 $m = m'$, 所以证明了 $m_0 = m_0'$.

我们知道 g 或 g' 半单当且仅当 m_0 或 m_0' 等于零. 由 $m_0 = m_0'$
可知 g 半单当且仅当 g' 半单, 即 G 半单当且仅当 G' 半单. 余下
证 $G = G'$, 即证 $g = g'$. 今由引理 5.2, $\mathfrak{f}' = [m', m'] = [m, m] =
\mathfrak{f}$, 而 $g' = \mathfrak{f}' + m' = \mathfrak{f} + m = g$, 至此证明了定理.

定义 设 (g, σ, Q) 为半单型 Riemann 对称 Lie 代数, 且
$g = \mathfrak{f} + m$ 为关于 σ 的标准分解. 如果 \mathfrak{f} 的表示 ad_m 在 m 上不可
约, 则称 (g, σ, Q) 是不可约的.

设 (g, σ, Q) 为不可约半单型 Riemann 对称 Lie 代数, 如果 g
关于 σ 的标准分解为 $g = \mathfrak{f} + m$, 则存在正实常数 λ, 使得
$$Q = \lambda B | m.$$ 事实上, Killing 型 B 在 g 上非退化, 在 \mathfrak{f} 上负定, 而 $B(\mathfrak{f}, m) = 0$. 所以 B 在 m 上非退化. 显然在 m 上存在关于 Q 的标准正
交基, 使对这组基 Q 对应单位方阵, $B| m$ 对应非异对称方阵 S, 于
是无妨设 S 为对角方阵 $S = \text{diag}(\lambda_1, \cdots, \lambda_n)$, $n = \dim m$. 今已
知, 记 $B| m = B_m$, 则 $B_m(ad_m(X)u, v) + B_m(u, ad_m(X)v) = 0,$
又 \(Q(ad_m(X)u, v) + Q(u, ad_m(X)v) = 0, \forall u, v \in m, X \in \mathfrak{g}. \) 所以在组定基下，\(ad_m(X) \) 对应方程 \(A_X \) 则有 \(A_XS + SA_X = 0, A_X + A'_X = 0. \) 即有 \(A_XS = SA_X, \forall X \in \mathfrak{g}. \) 今 \(ad_m \) 为不可约表示，由 Sohr 引理，\(S \) 为纯量阵。这证明了断言。

由于对不可约半单型 Riemann 对称 Lie 代数 \((\mathfrak{g}, \sigma, Q)\)，则不妨易 \(Q = B|_m \) 其中 \(B \) 为 \(\mathfrak{g} \) 的 Killing 型。所以我们可以简记为 \((\mathfrak{g}, \sigma)\)。

定理 5.4 设 \((\mathfrak{g}, \sigma, Q)\) 为半单型有效 Riemann 对称 Lie 代数，则

\[
(\mathfrak{g}, \sigma, Q) = (g_1, \sigma_1) \oplus \cdots \oplus (g_s, \sigma_s),
\]

其中 \((g_i, \sigma_i), i = 1, 2, \cdots, s\) 为不可约半单型有效 Riemann 对称 Lie 代数。而且上述分解不计次序唯一。

证 先证分解的存在性。今 \(\mathfrak{g} \) 半单，\(\mathfrak{g} \) 关于 \(\sigma \) 的标准分解为 \(\mathfrak{g} = \mathfrak{f} + m. \) 同前面讨论可知在 \(m \) 中存在关于 \(Q \) 之标准正交基，使得 \(Q \) 对应单位方阵，记 \(\mathfrak{g} \) 的 Killing 型为 \(B \)，则 \(B|_m = B_m \) 对应对角方阵 \(S = \text{diag} (\lambda_1 I_1, \cdots, \lambda_r I_r) \)，其中 \(I_1, \cdots, I_r \) 为单位方阵，\(\lambda_1 > \cdots > \lambda_r \) 为非零实数。于是将 \(m \) 按 \(S \) 的根子空间分解，有 \(m = \sum_{i=1}^r m_{\lambda_i} \) 使 \(Q(m_{\lambda_i}, m_{\lambda_j}) = B_m(m_{\lambda_i}, m_{\lambda_j}) = 0, i \neq j. \) 又在 \(m_{\lambda_i} \) 上存在标准正交基，使 \(Q \) 对应单位方阵，\(B_m \) 对应 \(\lambda_i \) 乘单位方阵，即有 \(B_m|_{m_{\lambda_i}} = \lambda_i Q|_{m_{\lambda_i}}. \)

另一方面，由 \(B_m, Q \) 都在 \(ad_m(\mathfrak{f}) \) 下不变。所以在上述基下，\(ad_m(X) \) 都是斜对称方阵，且和 \(S \) 可交换，\(\forall X \in \mathfrak{f}. \) 因此每个 \(m_{\lambda_i} \) 都是 \(ad_m(\mathfrak{f}) \) 的不变子空间。

将 \(m_{\lambda_i} \) 分解为关于 \(Q|_{m_{\lambda_i}} \) 两两正交的不可约不变子空间直接和。于是 \(m \) 分解为关于 \(Q \) 及 \(B_m \) 同时两两正交的不可约不变子空间直接和

\[
m = m_1 + \cdots + m_r.
\]

在每个不变子空间 \(m_i \) 上，\(B_m \) 是 \(Q \) 的常数倍。

先证 \([m_i, m_j] = 0, i \neq j. \) 事实上，\([m_i, m_j] \subseteq \mathfrak{f}. \) 今

• 57 •
\[B([m_i, m_j], \xi) = -B(m_j, [m_i, \xi]) = B(m_i, m_j) = 0, \ i \neq j. \]

但是 \(B \) 在 \(\xi \) 上负定，所以证明了 \([m_i, m_j] = 0, \ i \neq j \). 于是
\[\xi = [m, m] = [\sum m_i, \sum m_j] = \sum [m_i, m_j]. \]

又由 \(B([m_i, m_j], [m_j, m_j]) = B(m_j, [m_i, [m_j, m_j]]) = 0, \ i \neq j \).

所以 \(\xi = \sum [m_i, m_j] \) 是关于 \(B \) 两两正交的子空间直接和。记
\[g_i = [m_i, m_i] + m_i, \ i = 1, 2, \ldots, r. \]

于是 \(g \) 分解为关于 \(B \) 两两正交的子空间直接和
\[g = g_1 + \cdots + g_r, \]

下面证明此分解为理想子代数的直接和。事实上，只需证 \(g_i \) 为理想即可。今 \(m_i \) 为 \(ad_m \xi \) 的不变子空间，所以有 \([\xi, m_i] \subseteq m_i \). 因此 \([\xi, g_i] \subseteq g_i \). 再由 \([m, m_i] = [m_i, m_i] \subseteq \xi \) 及 \([\xi, m_i] \subseteq m_i \)，所以 \([m, g_i] \subseteq m_i + [m_i, m_i] = g_i \). 这证明了断言。

记 \(\sigma_i = \sigma_i, \xi_i = [m_i, m_i], g_i = \xi_i + m_i, \ i = 1, 2, \ldots, r \). 易证 \(g_i \) 关于 \(\xi_i \) 之对合同构 \(\sigma_i \) 的标准分解即 \(g_i = \xi_i + m_i \)，且由 \(B | g_i \) 非退化，所以 \(g_i \) 为半单 \(Lie \) 代数，又 \(ad_m \xi \) 在 \(m_i \) 上不可约。所以 \((g_i, \sigma_i) \) 为不可约半单型 \(Riemann \) 对称 \(Lie \) 代数。有效性证明是显然的。至此证明了分解存在性。

下面证明分解的唯一性。

设 \((g, \sigma, Q)\) 另有一个分解式
\[(g, \sigma, Q) = (g'_1, \sigma'_1) \oplus \cdots \oplus (g'_s, \sigma'_s). \]

记 \(g_i' \) 关于 \(\sigma_i' \) 的标准分解为 \(g_i' = \xi_i' + m_i' \)，其中 \(\xi_i' = [m_i', m_i'] \)，则有
\[\xi = \xi_1 + \cdots + \xi_r = \xi_1' + \cdots + \xi_s', \]
\[m = m_1 + \cdots + m_r = m_1' + \cdots + m_s'. \]

今 \(ad_m \xi \) 在 \(m_i' \) 上不可约。由 \([g_i, g_i]' = 0, \ i \neq j \)，所以 \(ad_m \xi \) 在 \(m_i' \) 上不可约，在 \(m_j', j \neq i \) 上为零表示。今 \(ad_m \xi \) 以 \(m_1, \ldots, m_r \) 为不变子空间。所以存在指标 \(k = k(\xi) \)，使 \((ad_m \xi_i)m_k = 0 \)。这证明了 \(m_i' \subseteq m_{k(i)}, \ i = 1, 2, \ldots, s \)，又 \(k(1), \ldots, k(s) \) 为 \(1, 2, \ldots, r \) 中 \(s \) 个不同指标。同理考虑 \(ad_m \xi \)，于是证明了 \(r = s \) 及 \(\{m_1, \ldots, m_r\}, \{m_1', \ldots, m_s'\} \) 是同一个子空间集合。由于
\[l = [m, m'], \quad l' = [m', m'], \]
所以证明了 \(g_1', \ldots, g_r' \) 是 \(g_1, \ldots, g_r \) 的一个排列。故唯一性得证。
定理证完。

推论 设 \((g, \sigma, Q)\) 是 Riemann 对称 Lie 代数，且 \(g \) 是单 Lie 代数，则 \((g, \sigma, Q)\) 有效且不可约。因此对 \(g \) 的 Killing 型 \(B \) 及 \(g \) 关于 \(\sigma \) 的标准分解 \(g = l + m \)，则存在正常数 \(\lambda \)，使 \(Q = \lambda(B|m) \)。

证 有效性由 \(g \) 单而显然，需要证 \(m \) 为 \(ad_m l \) 的不可约不变子空间。事实上，若 \(ad_m \) 在 \(m \) 上可约，由定理 5.4，\(g \) 分解为至少两个非零理想的直接和，但 \(g \) 单，这就导出矛盾。推论证完。

定义 半单型对称 Riemann 空间 \((M, g)\) 称为不可约，如果 \((M, g)\) 表为有效 Riemann 对称代数空间 \((G/K, g)\)，使 \((G/K, g)\) 对应了不可约有效 Riemann 对称 Lie 代数 \((g, \sigma)\)。

定理 5.5 半单型单连通对称 Riemann 空间等度量同构于一些半单型单连通不可约对称 Riemann 空间的直乘积。

证 应用定理 5.4，类似于定理 5.3 的证明可证之。

§ 6 不可约对称 Riemann 空间的分类

由定理 5.3 及定理 5.5，单连通半单型对称 Riemann 空间在等度量同构下的分类问题化为单连通不可约半单型对称 Riemann 空间在等度量同构下的分类，从而化为半单型有效不可约 Riemann 对称 Lie 代数在同构下的分类。

定理 6.1 半单型有效不可约 Riemann 对称 Lie 代数 \((g, \sigma)\) 同构于下面四类型之一。

(CI) \(g \) 是紧实单 Lie 代数，\(\sigma \) 为 \(g \) 的对合自同构。

(CII) \(g = g_1 \oplus g_2 \) 为理想子代数直接和，其中 \(g_2 \) 为紧实单 Lie 代数，\(\sigma \) 定义为 \(\sigma(X, Y) = (Y, X), \forall X, Y \in g_1 \)。

(NI) \(g \) 为非紧实单 Lie 代数，使其复化 \(g^c \) 为复单 Lie 代数，且 \(\sigma \) 为 \(g \) 的 Cartan 对合。

(NII) \(g \) 为非紧实单 Lie 代数，使其复化 \(g^c \) 不是复单 Lie 代数。
数，但 σ 为 g 的 Cartan 对合。
又这四种类型都是半单型有效不可约 Riemann 对称 Lie 代数。
证 先证这四种类型都是半单型有效不可约 Riemann 对称空间。首先，g 都有对合自同构 σ。g 关于 σ 的标准分解记作 g = f + m，在类型 (CII)，Q = B m = B |m 在 m 上定正；在类型 (NI)，(NII)，Q = B m = B |m 在 m 上定正。所以对类型 (CI)，(NI)，(NII)，g 单。由定理 5.1 之推论，便证明了断言。对类型 (CII)，问题化为证明 (g, σ) 有效，且不可约，今
\[g = g_1 \oplus g_1, \quad \sigma(X, Y) = (Y, X), \quad X, Y \in g_1. \]
所以 f = \{ (X, X) | X \in g_1 \}, m = \{ (X, -X) | X \in g_1 \}。
显然 f \cong g_1。由 g_1 单，所以 g 有效。今
\[(ad_m(X, X))(Y, -Y) = ([X, Y], -[X, Y]), \]
在线性同构 (X, -X) \rightarrow X 下 m 映为 g_1，这时 ad_m(X, X)诱导为 g_1 上的附属表示 ad_m X，\forall X \in g_1。由 g_1 单，所以附属表示不可约。这证明了 ad_m f 在 m 上不可约。所以对类型 (CII)，也证明了断言。

下面证明任一有效不可约 Riemann 对称 Lie 代数 (g, σ) 同构于四种类型之一。
设 g 是实单 Lie 代数。由定理 5.4 的推论，Q = \lambda B m，其中 \lambda 为非零实数。当 \lambda > 0，则由 Q 定正，所以 B m 定正，已知 B t = B | f 定负(引理 5.1)。所以 σ 是 Cartan 对合(引理 5.1)。故 g 为非紧实单 Lie 代数。由 §4 可知，有效不可约 Riemann 对称 Lie 代数 (g, σ) 为型 (NI) 或 (NII)。当 \lambda < 0，则由 Q 定正，所以 B m 定负。已知 B t = B | f 定负，所以 B 在 g 上定负。于是 g 为紧实单 Lie 代数，即 (g, σ) 为 (CI) 型。
设 (g, σ) 为半单型有效不可约 Riemann 对称 Lie 代数，但 g 不是单 Lie 代数，而是半单 Lie 代数。则 g 分解为单理想直接和，使 g 的对合自同构 σ 诱导了单理想的一个排列。因此 σ 的不变子空间由两个单理想直接和构成。由 g 的有效性及不可约性，即 g
关于 σ 的标准分解 $g = f + m$, 则 f 的表示 $ad_{m}f$ 在 m 上不可约。这证明了 g 是两个单理想的直接和, 这两个单理想在 g 的对合自同构下互相同构。所以可以写作 $g = g_1 \oplus g_3$, 其中 g_1 为 g 的单理想, 而对合自同构 σ 为: $\sigma(\langle X, Y \rangle) = \langle Y, X \rangle, \forall \langle X, Y \rangle \in g_1 \oplus g_3$. 于是 $f = \{(X, X) | X \in g_1\}$, $m = \{(X, -X) | X \in g_3\}$. 由引理 5.1, g 的 Killing 型 B 使 $B|f$ 非负。但是作为 Lie 代数有 $f \cong g_1$. 另一方面, 显然 g 的 Killing 型
$$B((X, Y), (U, V)) = B_1(X, U) + B_1(Y, V),$$
其中 B_1 为 g_1 的 Killing 型. 所以记 $B_f = B|f$, 则
$$B_f((X, X), (Y, Y)) = 2B_1(X, Y).$$
由引理 5.1, B_f 负定. 因此 B_1 负定. 这证明了 g_1 为紧实单 Lie 代数. 所以 (g, σ) 为 (CII) 型的. 定理证完.

由此定理可知, (NI) 型及 (NII) 型 Riemann 对称 Lie 代数在同构意义下一一对应于非紧实单 Lie 代数. 这是因为非紧实单 Lie 代数的 Cartan 对合在共轭下唯一 (定理 4.6).

记 (g, σ, Q) 为半单型 Riemann 对称 Lie 代数. 记 g 关于 σ 的标准分解为 $g = f + m$. 考虑 g 的复化 $g^\mathbb{C}$, 它也半单. $g^\mathbb{C}$ 有实形式
$$g^* = f + \sqrt{-1} m.$$记 $f^* = f$, $m^* = \sqrt{-1} m$, 使 $g^* = f^* + m^*$ 为标准分解, 在 g^* 中定义了对合自同构 σ^*. 再对 m 上 $ad_{m}f$ 不变内积 Q, 在 m^* 上定义双线性函数 Q^*,
$$Q^*(\sqrt{-1}u, \sqrt{-1}v) = Q(u, v).$$
于是 Q^* 为 m^* 上的内积, 且在 $ad_{m}(f^*)$ 下不变. 所以 (g^*, σ^*, Q^*) 也是 Riemann 对称 Lie 代数, 由 g^* 半单, 故仍为半单型的. 显然 (g^*, σ^*, Q^*) 有效且仅当 (g, σ, Q) 有效, (g^*, σ^*, Q^*) 不可约, 当且仅当 (g, σ, Q) 不可约. 又 (g, σ, Q) 紧当且仅当 (g^*, σ^*, Q^*) 非紧.

定义 Riemann 对称 Lie 代数 (g^*, σ^*, Q^*) 称为 Riemann 对称 Lie 代数 (g, σ, Q) 的对偶.
定理 6.2 在半单型有效不可约 Riemann 对称 Lie 代数类中，(CI)型与 (NI) 型互为对偶，(CII)型与 (NII) 型互为对偶。

证 设 \((g, \sigma)\) 为 (CI) 型。即 \(g\) 为紧实 Lie 代数，\(\sigma\) 为对合自同构。记 \(g\) 关于 \(\sigma\) 的标准分解为 \(g = \mathfrak{f} + \mathfrak{m}\)，由定理 4.5，\(g\) 的复化 \(g^c\) 为复单 Lie 代数。于是 \(g^*\) 为实单 Lie 代数，它非紧。再 \(g\) 的 Killing 型 \(B\) 负定，所以 \(B = \mathfrak{f}\) 负定，\(B = B|\mathfrak{m}\) 也负定。因此对 \(g^*\) 的 Killing 型 \(B^*\)，由 \(B^*|\mathfrak{f} = B|\mathfrak{f}\)，它负定，\(B^*|\mathfrak{m} = -B|\mathfrak{m}\) 它正定。因此 \(\sigma^*\) 为 Cartan 对合。这证明了 \((g^*, \sigma^*)\) 为 (NI) 型。同法讨论，同样可以证当 \((g, \sigma)\) 为 (NI) 型，则 \((g^*, \sigma^*)\) 为 (CI) 型。所以在对偶下，(CI) 型和 (NI) 型间有一个一一对应。

设 \((g, \sigma)\) 为 (CII) 型。即 \(g = \mathfrak{g}_1 \oplus \mathfrak{g}_1\)，\(\mathfrak{g}_1\) 为紧实单 Lie 代数。\(\sigma(X, Y) = (Y, X)\)，\(\forall (X, Y) \in g\)。对 \(g\) 的复化 \(g^c = g_1^c \oplus g_1^c\)。由定理 4.5，因此 \(g_1^c\) 为复单 Lie 代数，\(g^c\) 的实形式 \(g^*\) 如下定义。令 \(g = \mathfrak{g}_1 \oplus \mathfrak{g}_1\) 关于 \(\sigma\) 的标准分解为 \(g = \mathfrak{f} + \mathfrak{m}\)，\(\mathfrak{f} = \{(X, X) | X \in \mathfrak{g}_1\}\)，\(\mathfrak{m} = \{(X, -X) | X \in \mathfrak{g}_1\}\)。于是 \(g^* = \mathfrak{f} + \sqrt{-1} \mathfrak{m}\)。即

\[g^* = \{(X + \sqrt{-1}Y, X - \sqrt{-1}Y) | X, Y \in \mathfrak{g}_1\} \]

而 \(\sigma^*\) 定义为

\[\sigma^*(X + \sqrt{-1}Y, X - \sqrt{-1}Y) = (X - \sqrt{-1}Y, X + \sqrt{-1}Y). \]

对 \(g^*\) 作实线性映射

\[(X + \sqrt{-1}Y, X - \sqrt{-1}Y) \mapsto X + \sqrt{-1}Y. \]

于是证明了这是线性同构。\(g^r \cong (\mathfrak{g}_1^c)^r\)。在这线性同构下，\(g^*\) 的对合自同构变为 \((\mathfrak{g}_1^c)^r\) 中关于紧实形式 \(g_1\) 的共轭变换

\[X + \sqrt{-1}Y \mapsto X - \sqrt{-1}Y, \quad \forall X, Y \in g_1. \]

因此 \((\mathfrak{g}_1^c)^r\) 是实单 Lie 代数，它的复化不是复单 Lie 代数，又关于紧实形式 \(g_1\) 的共轭变换为 Cartan 对合。这证明了 \((g^*, \sigma^*)\) 为 (NII) 型的。

反之，设 \((g, \sigma)\) 为 (NII) 型的。即 \(g\) 为非紧实单 Lie 代数，\(\sigma\) 为 Cartan 对合，而 \(g\) 的复化 \(g^c\) 为非单 Lie 代数。于是存在复单子代数 \(\mathfrak{h}\)，使 \(\mathfrak{h}^c = g\)，又 \(\sigma\) 为 \(\mathfrak{h}\) 中关于某个紧实形式 \(g_1\) 的共轭变换。记 \(\mathfrak{h}\) 中线性变换 \(I\)，使得 \(X \in \mathfrak{h}\)，\(IX = \sqrt{-1}X \in \mathfrak{h}\)。则有
\[g = g_1 + I g_1 \]

为空间直接和，且 \(g \) 关于 \(\sigma \) 的标准分解记作 \(g = f + m \)，则 \(f = g_1 \), \(m = I g_1 \)。所以从 \((g, \sigma)\) 出发构造 \((g^*, \sigma^*)\)。则

\[g^* = f + \sqrt{-1} m = g_1 + \sqrt{-1} I g_1. \]

\(g^* \) 中子集合

\[g_+ = \{ X - \sqrt{-1} I X \mid X \in g_1 \}, \quad g_- = \{ X + \sqrt{-1} I X \mid X \in g_1 \} \]

显然为 \(g^* \) 的理想，又 \(g^* \) 有理想直和 \(g^* = g_+ \oplus g_- \)。再在映射

\[X - \sqrt{-1} I X \rightarrow X, \quad X + \sqrt{-1} I X \rightarrow X, \quad \forall X \in g_1 \]

下 \(g_+ \) 及 \(g_- \) 都同构于 \(g_1 \)。又由

\[\sigma^*(X - \sqrt{-1} I X) = X + \sqrt{-1} I X, \]

所以 \(\sigma^*(g_+) = g_- \)。至此证明了 \((g^*, \sigma^*)\) 为 \((\mathrm{OII})\) 型的。所以 \((\mathrm{OII})\) 型和 \((\mathrm{NII})\) 型在上述对应下一一对应。定理证完。

例 由 \(\mathbb{R}^3 \) 中单位球 \((S^2, g)\) 及 Poincaré 上半平面 \((H^2, g)\) 定义的 Riemann 对称 Lie 代数互相对偶 (见 § 2 例 2 及例 3)。

由 Grassmann 流形 \((G_{p,q}(\mathbb{K}, g))\) 及 § 2 例 5, 例 6 引进的流形 \(D_{q,p}(\mathbb{K}) \), \(p \leq q \) 都是对称 Riemann 空间，除去 \(\mathbb{K} = \mathbb{R} \) 及 \(p = q = 1 \) 外，它们定义的 Riemann 对称 Lie 代数互相对偶。

由命题 1.3 及定理 2.1，我们知道由一个连通对称 Riemann 空间 \((M, g)\) 可以定义一个有效 Riemann 对称 Lie 代数 \((g, \sigma, Q)\)。由定理 5.3, 当 \((M, g)\) 为半单型时，则 Lie 代数 \(g \) 由 \((M, g)\) 唯一决定。但是在一般情形，\((M, g)\) 为半单型不可约 Riemann 对称 Lie 代数时，\((M, g)\) 由 \((g, \sigma)\) 唯一决定。同样，在下—章可以看到，当 \((g, \sigma)\) 由紧半单型不可约对称 Hermite 空间定义时，则此空间也由 \((g, \sigma)\) 唯一决定。

定理 6.3 设 \((g, \sigma)\) 为非紧半单型的有效不可约 Riemann 对称 Lie 代数，则定义 \((g, \sigma)\) 的连通对称 Riemann 空间 \((M, g)\) 在等度量同构下唯一。且群 \(I(M, g) \) 的中心由单位元素构成，又 \(M \) 单连通。

证：由条件，\((M, g)\) 为连通对称 Riemann 空间，它不可约，
且为非紧单型，由定理 5.3，它写成 Riemann 对称旁集空间 G/K，则 $G = I(M, g)^0$ 唯一决定 (M, g).

今 (g, σ) 由 (M, g) 定义，所以 g 为 G 的 Lie 代数。由于 σ 为 Cartan 对合，g 关于 σ 的标准分解 $g = \mathfrak{f} + \mathfrak{m}$，则 \mathfrak{f} 为 g 的特征子代数，它紧。所以 $G = I(M, g)^0$ 中对应 \mathfrak{f} 的 Lie 子群 K 为紧子群。

记 G 的附属群 $Ad(G) = \hat{G}$。由 g 半单，所以 G 的附属表示定义了 G 到 \hat{G} 上的同态 π，其核为 G 的中心，它必为离散子群，且可视 Lie $\hat{G} = \mathfrak{g}$。在这样意义下 \hat{G} 中对应 \mathfrak{f} 的子群，记作 \hat{K}，由定理 4.6，\hat{K} 为 \hat{G} 的最大紧子群，且 \hat{G}/\hat{K} 单连通。另一方面，$\pi(K)$ 为 \hat{G} 中紧子群，它和 K 有相同的 Lie 代数，所以 $\pi(K) = \hat{K}$。从而由 π，$G \to \hat{G}$ 诱导了 G/K 到 \hat{G}/\hat{K} 上的映射 π'，它定义为 $aK \to \pi'(aK) = \pi(a)\hat{K}$。由于 π 的核为 G 的中心离散子群，所以 π' 为覆盖映射，使标准纤维为 $\pi^{-1}(\hat{K})/K$。但是 \hat{G}/\hat{K} 单连通，所以 G/K 也单连通，故 π' 为 G/K 到 \hat{G}/\hat{K} 上的微分同胚。于是 $\pi^{-1}(\hat{K}) = K$，即 $\pi：G \to \hat{G}$ 的核在 K 中。由 G 在 M 上作用有效，所以 K 中无 G 的非平凡正规子群。这证明了 $\pi：G \to \hat{G}$ 的核由单位元素组成，即 π 为同构。这证明了 $G = I(M, g)^0$ 的中心由单位元素组成，且 $M = G/K$ 单连通，又 (M, g) 和 $(\hat{G}/\hat{K}, \hat{g})$ 等度量同构，其中 \hat{g} 为 \hat{G}/\hat{K} 上 \hat{G} 不变 Riemann 度量，它由 g 的 Killing 型在 \mathfrak{m} 上的限制来定义，其中 g 关于 σ 的标准分解为 $g = \mathfrak{f} + \mathfrak{m}$。定理证完。

下面我们小结一下关于不可约对称 Riemann 空间的分类结果。

由定理 6.1 和定理 6.3，非紧半单型不可约对称 Riemann 空间全是单连通的，且一一对应于实单 Lie 代数。它们按照这个实单 Lie 代数的复化是复单 Lie 代数或不是复单 Lie 代数这三种情形，而分成两大类 (NI) 型及 (NII) 型。

由定理 6.2，半单型紧单连通对称 Riemann 空间在对偶下一一对应于半单型非紧对称 Riemann 空间。相应于 (NI) 型者为
<table>
<thead>
<tr>
<th>Cartan 符号</th>
<th>$M = G/K$</th>
<th>维 数</th>
<th>秩</th>
</tr>
</thead>
<tbody>
<tr>
<td>AII</td>
<td>$SU(n)/SO(n)$, $n \geq 2$</td>
<td>$(n-1)(n+2)/2$</td>
<td>$n-1$</td>
</tr>
<tr>
<td>AIII</td>
<td>$SU(2n)/Sp(n)$, $n \geq 1$</td>
<td>$(n-1)(2n+1)$</td>
<td>$n-1$</td>
</tr>
<tr>
<td>BDI</td>
<td>$SU(p+q)/SU(p) \times U(q)$, $p \geq q \geq 1$</td>
<td>$2pq$</td>
<td>q</td>
</tr>
<tr>
<td>BDII</td>
<td>$SO(p+q)/SO(p) \times SO(q)$, $p \geq q \geq 2$, $p+q+4$</td>
<td>pq</td>
<td>q</td>
</tr>
<tr>
<td>DIII</td>
<td>$SO(n+1)/SO(n)$, $n \geq 2$</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>DIII</td>
<td>$SO(2m)/U(m)$, $m \geq 4$</td>
<td>$m(m-1)$</td>
<td>$[m/2]$</td>
</tr>
<tr>
<td>CII</td>
<td>$Sp(n)/U(n)$, $n \geq 3$</td>
<td>$n(n+1)$</td>
<td>n</td>
</tr>
<tr>
<td>CII</td>
<td>$Sp(p+q)/Sp(p) \times Sp(q)$, $p \geq q \geq 1$</td>
<td>$4pq$</td>
<td>q</td>
</tr>
<tr>
<td>EII</td>
<td>$F_4/Sp(4)$</td>
<td>43</td>
<td>6</td>
</tr>
<tr>
<td>EII</td>
<td>$E_6/SU(2) \times SU(6)$</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>EIII</td>
<td>$E_6/Spin(10) \times SO(2)$</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>EIV</td>
<td>E_6/F_4</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>EV</td>
<td>$E_7/SU(8)$</td>
<td>70</td>
<td>7</td>
</tr>
<tr>
<td>EVI</td>
<td>$E_7/Sp(12) \times SU(2)$</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>EVII</td>
<td>$E_7/E_6SO(2)$</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>EVIII</td>
<td>$E_6/Sp(16)$</td>
<td>128</td>
<td>8</td>
</tr>
<tr>
<td>EIX</td>
<td>$E_8/E_7SU(2)$</td>
<td>112</td>
<td>4</td>
</tr>
<tr>
<td>FII</td>
<td>$F_4/Sp(3) \times SU(2)$</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>FII</td>
<td>$F_4/Spin(8)$</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>$G_2/SU(2) \times SU(2)$</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
(CI)型，相应于(NII)型者为(CII)型。

如果 \((M, g)\)是(CI)型的，则 \(M\) 是紧单 Lie 群 \(G\) 的 Riemann 对称旁集空间 \(G/K\)，使 \(g\) 为 \(G/K\) 上 \(G\) 不变 Riemann 度量。如果 \((M, g)\) 是(CII)型的，则 \(M\) 是紧单 Lie 群，\(g\) 是 \(G\) 的双边不变度量。

下面给出(CI)型对称 Riemann 空间的分类表，用对偶就可给出(NI)型对称 Riemann 空间，而(CII)型对称 Riemann 空间的分类表即紧单 Lie 群的分类表。在这里从略。

下面对表 IV 中的一些符号作解释。在 AIII 中，
\[S(U(p) \times U(q)) = SU(p+q) \cap (U(p) \times U(q)) \]
在 EII 中，\(K = S_3(4)\) 可以用它关于二阶中心子群的商群所代替，在 EII, EIII, EVI, EVII, ELIX 及 FI 中，\(K\) 不是直乘积，而是半直乘积。在 IV 中 \(SU(8)\) 可以用它关于二阶中心子群的商群所代替。在 EIII, EVII 中分别出现的群 \(E_8, E_7\) 是紧单 Lie 群的附属群。在其他情形，\(E_6, E_7\)（也包括 \(E_8, F_4\) 及 \(G_2\)）都是单连通 Lie 群。

AIII 给出的对称 Riemann 空间是复 Grassmann 流形，BDI 给出的是实 Grassmann 流形，BDII 给出的是球，CII 给出的是四元四 Grassmann 流形，FII 给出的是 Cayley–Dickson 射影平面。
第三章
对称 Hermite 空间

§1 复流形

1.1. 复流形

复 Euclid 空间 \C^n 中点今后用 $z = (z^1, \ldots, z^n)$ 表示，其中 z^i 为 z 点的第 i 个分量或坐标，$z^i \in \C$, $i = 1, 2, \ldots, n$.

定义 \C^n 中开集 O 上复值函数 f 如果连续，且在 O 上点点偏导数 $\frac{\partial f}{\partial z^1}, \ldots, \frac{\partial f}{\partial z^n}$ 都存在，则 f 称为 O 上全纯函数。

它有如下的等价定义：

1）\C^n 中开集 O 上复值连续函数 f 全纯当且仅当对 O 中每点 $a = (\alpha^1, \ldots, \alpha^n)$，存在 O 中点 a 的邻域，在此邻域中 f 可展成收敛幂级数

$$ f(z^1, \ldots, z^n) = \sum_{k_1, \ldots, k_n = 0}^{\infty} a_{k_1, \ldots, k_n} (z^1 - \alpha^1)^{k_1} \cdots (z^n - \alpha^n)^{k_n}, $$

其中 f 在 O 上为光滑函数，有

$$ a_{k_1, \ldots, k_n} = \frac{1}{k_1! k_2! \cdots k_n!} \left. \frac{\partial^{k_1+\cdots+k_n} f}{\partial z_1^{k_1} \cdots \partial z_n^{k_n}} \right|_{z=a}. $$

2）\C^n 中开集 O 上复值连续函数 f 全纯当且仅当记 $z^i = x^i + \sqrt{-1} y^i$, $x^i, y^i \in \R$, $i = 1, 2, \ldots, n$，则 f 作为 $(x^1, y^1, \ldots, x^n, y^n)$ 的函数，它一阶可微，且适合 Cauchy–Riemann 方程

$$(1.1) \quad \frac{\partial \text{Re} f}{\partial x^i} = \frac{\partial \text{Im} f}{\partial y^i}, \quad \frac{\partial \text{Re} f}{\partial y^i} = -\frac{\partial \text{Im} f}{\partial x^i}, \quad i = 1, 2, \ldots, n.$$

全纯函数最基本的性质为

最大模原理 设 f 为 \C^n 中开集 O 上全纯函数，若在 O 中存
在一点 \(a \), 使 \(\max_{z \in O} |f(z)| = |f(a)| \), 则 \(f \) 为常数函数。

定义 设 \(O \) 为 \(\mathbb{C}^n \) 中开集，连续映射 \(\varphi: O \to \mathbb{C}^n \) 称为全纯的，如果函数 \(\varphi^i = z^i \varphi, i = 1, 2, \ldots, n \) 都是全纯函数。

定义 设 \(\mathbb{C}^n \) 中开集 \(O_1, O_2 \) 间有同胚映射 \(\varphi: O_1 \to O_2 \)，使得 \(\varphi, \varphi^{-1} \) 都是全纯映射。则 \(\varphi \) 称为 \(O_1 \) 到 \(O_2 \) 上的全纯同构映射，或简称为同构映射。即 \(O_1 \) 与 \(O_2 \) 称为全纯同构，或简称为同构。

现在引进复流形的概念。

定义 仿紧 Hausdorff 拓扑空间 \(M \) 上如果有一个开覆盖 \(\{U_i\} = U \)，使对每个 \(U_i \)，存在一个同胚映射 \(\varphi_i: U_i \to \mathbb{C}^n \)，其中 \(n \) 与 \(\lambda \) 无关。于是利用 \(\varphi_i \) 可在 \(U_i \) 中任一点 \(p \) 产生坐标 \(\varphi_i(p) = (z^1, \ldots, z^n) \)，所以 \(\varphi_i \) 称为坐标系，\(U_i \) 称为局部坐标领域，\((U_i, \varphi_i) \) 称为标架。所有标架构成集合 \(\mathcal{S} = \{(U_i, \varphi_i) | U_i \in U\} \)。

我们说在 \(M \) 中依 \(\mathcal{S} \) 引进了复结构，如果当 \(U_i \cap U_\mu \neq \emptyset \)，则同胚 \(\varphi_i \circ \varphi_\mu^{-1}: \varphi_\mu(U_i \cap U_\mu) \to \varphi_i(U_i \cap U_\mu) \) 为全纯同构映射。这时 \(M \) 称为 \(n \) 维复流形，或简称为复流形。

例 1 取 \(M = \mathbb{C}^n \)，复结构由 \{(\mathbb{C}^n, id)\} 引进，其中 \(id \) 为 \(\mathbb{C}^n \) 上恒等映射。则 \(\mathbb{C}^n \) 为复流形。

例 2 取 \(M \) 为 Riemann 球 \(S = \{x = (x^1, x^2, x^3) \in \mathbb{R}^3 | (x^1)^2 + (x^2)^2 + (x^3)^2 = 1\} \)。其中取点 \(p = (0, 0, 1) \)，\(q = (0, 0, -1) \)。在 \(S \) 中取开集 \(U_1 = S - \{p\} \)，\(U_2 = S - \{q\} \)。定义 \((U_i, \varphi_i) \) 如下:

\[
\varphi_1(x) = \frac{x^1 + \sqrt{1 - x^2}}{1 - x^2}, \quad \varphi_2(x) = \frac{x^1 - \sqrt{1 - x^2}}{1 + x^2}.
\]

于是 \(\varphi_1(x) \varphi_2(x) = 1 \) 对 \(x \in U_1 \cap U_2 \) 成立。自然 \(\varphi_i: U_i \to \mathbb{C} \) 是同胚映射。所以 Riemann 球按照 \(\mathbb{R}^3 \) 的诱导拓扑，由 \{(\mathbb{C}^1, \varphi_i), i = 1, 2\} 在其中引进了复结构，使 \(S \) 为一维复流形。

例 3 在 \(n + 1 \) 维复 Euclid 空间 \(\mathbb{C}^{n+1} \) 中任取一点 \(a = (a^0, a^1, \ldots, a^n) \neq 0 \)。过此点及原点的复直线 \(\{z \in \mathbb{C}^{n+1} | z = \alpha a, \alpha \in \mathbb{C}\} \) 记作 \([a] \)。所有 \(\mathbb{C}^{n+1} \) 中这种复直线构成集合 \(P^n(\mathbb{C}) \)。于是有 \(\mathbb{C}^{n+1} - \{0\} \) 到 \(P^n(\mathbb{C}) \) 上的映射

\[
\pi: \mathbb{C}^{n+1} - \{0\} \to P^n(\mathbb{C}), \quad x \mapsto [a].
\]
在 $P^n(\mathbb{C})$ 中引进拓扑，使 π 为连续映射。则 $P^n(\mathbb{C})$ 为仿紧 Hausdorff 拓扑空间。由第二章，§ 3，例 5 可知这时 $P^n(\mathbb{C})$ 为 C^∞ 流形。

在 $\mathbb{C}^{n+1} - \{0\}$ 中取子集合 \{\(z \in \mathbb{C}^{n+1} | z = (z^0, \cdots, z^n), z^\lambda \neq 0\)\}，其中 λ 为固定指标，$0 \leq \lambda \leq n$。显然它为 \mathbb{C}^{n+1} 中开集，记它在 π 下之像为 U_λ，即得 $P^n(\mathbb{C})$ 中开集

\[U_\lambda = \{[z] | z^\lambda \neq 0\}. \]

作同胚映射 $\varphi_\lambda: U_\lambda \to \mathbb{C}^n$，它定义为

\[\varphi_\lambda([z]) = \varphi_\lambda([z^0, \cdots, z^n]), \]

\[= (\frac{z^0}{z^\lambda}, \cdots, \frac{z^{\lambda-1}}{z^\lambda}, \frac{z^{\lambda+1}}{z^\lambda}, \cdots, \frac{z^n}{z^\lambda}). \]

于是由 \{(U_\lambda, \varphi_\lambda), \lambda = 0, 1, \cdots, n\} 便在 $P^n(\mathbb{C})$ 中引进了复结构，使 $P^n(\mathbb{C})$ 为 n 维复流形，称为 n 维复射影空间。

定义 设 M 由标架系 \{(U_\lambda, \varphi_\lambda)\} 引进了复结构，使 M 为复流形。对 M 中开集 O，O 上复值函数 f 称为全纯的，如果当 $U_\lambda \cap O \neq \emptyset$，则 $f \circ \varphi_\lambda$ 是 \mathbb{C}^n 中开集 $\varphi_\lambda(U_\lambda \cap O)$ 上的全纯函数。

定理 1.1 设 M 为紧连通复流形，则 M 上全纯函数 f 必为常数。

证 记 $c = \max_{x \in M} |f(x)|$。由于 M 紧，所以存在 $x_0 \in M$，使 $|f(x_0)| = c$。用通常全纯函数最大模原理，存在 x_0 的邻域 U，使在 U 上 $f(x) = f(x_0)$。今 M 中子集 \(\{x \in M | f(x) = f(x_0)\} \) 显然为 M 中闭集，包含 U，故非空。用通常全纯函数最大模原理可证此集合为 M 中开集，但 M 连通，这证明了 $M = \{x \in M | f(x) = f(x_0)\}$，定理证完。

定义 设 M 为由标架系 \{(U_\lambda, \varphi_\lambda)\} 定义的复流形，N 为由标架系 \{(V_\mu, \psi_\mu)\} 定义的复流形。记 φ 为 M 到 N 内的连续映射。任取 M 中局部坐标邻域 U_λ 中点 m，对任一含 N 中点 $\varphi(m)$ 的局部坐标邻域 V_μ，如果 $\psi_\mu \circ \varphi \circ \varphi_\lambda^{-1}$ 是 $\varphi_\lambda(U_\lambda)$ 中含 $\varphi_\lambda(m)$ 的开集到 $\psi_\mu(V_\mu)$ 内的全纯映射，则 φ 称为 M 到 N 内的全纯映射。

定义 设复流形 M 到复流形 N 上的同胚映射 φ，使 φ, φ^{-1} 都

• 69 •
是全纯映射, 则 \(\varphi \) 称为 \(M \) 到 \(N \) 上的全纯同构映射, 或简称为同构映射, 这时 \(M \) 和 \(N \) 称为全纯同构, 或简称为同构.

复流形的根本问题是在同构下的分类问题.

例 1. 维复射影空间 \(\mathbb{P}^1(\mathbb{C}) \) 和 Riemann 球 \(S \) 间有一个自然的全纯同构映射, 所以它们同构.

下面引进向量场, 为此给出复流形 \(M \) 是如何看作实流形. 首先, 显然 \(\mathbb{C}^n = \mathbb{R}^{2n} \). 设 \(n \) 维复流形 \(M \) 由标架集 \(\{(U_\alpha, \varphi_\alpha)\} \) 引进复结构. 已知 \(\varphi_\alpha \) 为 \(U_\alpha \) 到 \(\mathbb{C}^n = \mathbb{R}^{2n} \) 内的同胚映射, 所以 \(\varphi_\alpha \) 也是 \(U_\alpha \) 到 \(\mathbb{R}^{2n} \) 内的同胚映射. 在这个意义上, 标架集 \(\{(U_\alpha, \varphi_\alpha)\} \) 使 \(M \) 对原来的拓扑成为 \(2n \) 维实解析流形. 用 \(M_\mathbb{R} \) 来表示.

所以 \(M \) 和 \(M_\mathbb{R} \) 分别为 \(n \) 维复流形及 \(2n \) 维实解析流形, 但是作为点集, 它们是同一个. 这两种流形的局部坐标邻域也是相同的, 由此可见, \(n \) 维复流形是 \(2n \) 维实解析流形.

现在引进复向量场. 任取 \(x \in M = M_\mathbb{R} \). 则 \(T_x(M_\mathbb{R}) \) 为点 \(x \) 在 \(M_\mathbb{R} \) 上的切空间. 它的复化

\[
T_x(M_\mathbb{R}) = \{ u + \sqrt{-1} v \mid u, v \in T_x(M_\mathbb{R}) \}.
\]

所以 \(T_x(M_\mathbb{R}) \) 为 \(n \) 维复线性空间, 其中元素称为复切向量. 对 \(M_\mathbb{R} \) 上 \(C^m \) 向量场 \(Y, Z \). 则 \(X = Y + \sqrt{-1} Z \) 称为复流形 \(M \) 上的 \(C^m \) (复) 向量场.

下面给出复向量场的坐标表达式. 在复流形 \(M \) 中任取标架 \((U, \varphi) \). \(U \) 中点 \(x \) 的坐标为 \(z = (z^1, \ldots, z^n) \). 记

\[
z' = x' + \sqrt{-1} y', \quad x', y' \in \mathbb{R}.
\]

于是点 \(x \) 的切空间 \(T_x(M_\mathbb{R}) \) 有基

\[
\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^1}, \ldots, \frac{\partial}{\partial y^n}.
\]

因此 \(T_x(M_\mathbb{R}) \) 有基

\[
\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^1}, \ldots, \frac{\partial}{\partial y^n}.
\]

其中

\[70\]
\begin{equation}
\frac{\partial}{\partial z^i} = \frac{1}{2} \left(\frac{\partial}{\partial x^i} - \sqrt{-1} \frac{\partial}{\partial y^i} \right),
\end{equation}
\begin{equation}
\frac{\partial}{\partial \bar{z}^i} = \frac{1}{2} \left(\frac{\partial}{\partial x^i} + \sqrt{-1} \frac{\partial}{\partial y^i} \right), \quad i = 1, 2, \ldots, n.
\end{equation}

于是在 U 上，复向量场形如
\begin{equation}
\sum_{i=1}^{n} a_i(z, \bar{z}) \frac{\partial}{\partial z^i} + \sum_{i=1}^{n} b_i(z, \bar{z}) \frac{\partial}{\partial \bar{z}^i},
\end{equation}
其中 $a_i(z, \bar{z})$, $b_i(z, \bar{z})$ 为 $\varphi(U)$ 上复值 C^∞ 函数。

定义 复流形 M 的子集 N 称为复子流形，如果 N 为复流形，使 $N \Subset M$ 为 M 的实子流形，且恒等映射 $i: N \to M$ 为全纯映射。

1.2. 复结构

一个自然的问题是，什么样的 $2n$ 维 C^∞ 流形，能成为 n 维复流形．为了考虑这个问题，我们先从复流形出发。

设 M 为 n 维复流形。任取一个标架 (U, φ)．对 U 中点 x，记 x 点坐标为 $\varphi(x) = (x^1, x^2, \ldots, x^n)$，记 $z^i = x^i + \sqrt{-1} y^i$, $z^i, y^i \in \mathbb{R}$．今 x 点在 $M \Subset M$ 上的切空间 $T_x(M \Subset)$ 中有基
\begin{equation}
\left(\frac{\partial}{\partial x^1} \right)_x, \ldots, \left(\frac{\partial}{\partial x^n} \right)_x, \left(\frac{\partial}{\partial y^1} \right)_x, \ldots, \left(\frac{\partial}{\partial y^n} \right)_x.
\end{equation}
定义线性同构
\begin{equation}
I_z \left(\frac{\partial}{\partial x^i} \right)_x = \left(\frac{\partial}{\partial y^i} \right)_z, \quad I_z \left(\frac{\partial}{\partial y^i} \right)_z = - \left(\frac{\partial}{\partial x^i} \right)_z, \quad i = 1, 2, \ldots, n.
\end{equation}
于是在 U 上可以定义 I_U，使 $\left(I_U \right)_z = I_z$．再若两个标架 (U, φ), (V, ψ)，使 $U \cap V \neq \emptyset$，任取 $x \in U \cap V$。于是在 U 上定义了 I_U，在 V 上定义了 I_V。下面证明 $\left(I_U \right)_x = (I_V)_x$。

事实上，点 x 在 (U, φ) 之坐标为 $\varphi(x) = (x^1, \ldots, x^n)$，在 (V, ψ) 之坐标为 $\psi(x) = (w^1, \ldots, w^n)$，记 $w^i = u^i + \sqrt{-1} v^i$, $u^i, v^i \in \mathbb{R}$，则由 Cauchy–Riemann 方程，在 $U \cap V$ 上有
\begin{equation}
\frac{\partial x^i}{\partial u^k} = \frac{\partial y^i}{\partial v^k}, \quad \frac{\partial y^i}{\partial u^k} = - \frac{\partial x^i}{\partial v^k}, \quad 1 \leq i, k \leq n.
\end{equation}
另一方面，
\[
\left(\frac{\partial}{\partial u^k} \right)_x = \sum_{i=1}^n \left(\frac{\partial x^i}{\partial u^k} \right)_x \left(\frac{\partial}{\partial x^i} \right)_x + \sum_{i=1}^n \left(\frac{\partial y^i}{\partial u^k} \right)_x \left(\frac{\partial}{\partial y^i} \right)_x,
\]

\[
\left(\frac{\partial}{\partial v^k} \right)_x = \sum_{i=1}^n \left(\frac{\partial x^i}{\partial v^k} \right)_x \left(\frac{\partial}{\partial x^i} \right)_x + \sum_{i=1}^n \left(\frac{\partial y^i}{\partial v^k} \right)_x \left(\frac{\partial}{\partial y^i} \right)_x.
\]

由\((I_U)_x\)之定义，有

\[
(I_U)_x \left(\frac{\partial}{\partial u} \right)_x = -\sum_{i=1}^n \left(\frac{\partial x^i}{\partial u} \right)_x \left(\frac{\partial}{\partial x^i} \right)_x - \sum_{i=1}^n \left(\frac{\partial y^i}{\partial u} \right)_x \left(\frac{\partial}{\partial y^i} \right)_x
\]

\[
= \sum_{i=1}^n \left(\frac{\partial y^i}{\partial u} \right)_x \left(\frac{\partial}{\partial y^i} \right)_x + \sum_{i=1}^n \left(\frac{\partial x^i}{\partial u} \right)_x \left(\frac{\partial}{\partial x^i} \right)_x
\]

\[
= \left(\frac{\partial}{\partial v} \right)_x = (I_V)_x \left(\frac{\partial}{\partial u} \right)_x.
\]

同理可证\((I_U)_x \left(\frac{\partial}{\partial v} \right)_x = (I_V)_x \left(\frac{\partial}{\partial v} \right)_x\)，这证明了在\(U \cap V\)上\(I_U = I_V\)。所以在\(M\)上定义了\((1,1)\)型张量场\(I\)，使对每个标架\((U, \varphi)\)，

\[
(I)_{Ux} = I_{Vx}.
\]

它的有

\[I^a = -id.\]

定义 上面在\(M_\mathbb{R}\)上定义的\((1,1)\)型张量场\(I\)使任意取\(x \in M\)，

\[
(I)_x = I_x\] 为称为复流形\(M\)的复结构。

下面给出复流形\(M\)上复结构的定义性质。

命题 1.1 复流形\(M\) 中开集\(O\) 上复值\(C^\infty\) 函数\(f\)全纯当且仅当\(f\)适合

\[
(1.5) \quad df(Iu) = \sqrt{-1} df(u), \quad \forall u \in T_x(M), \quad x \in O,
\]

其中\(df : T_x(M) \to \mathbb{C}\)是\(f\)的微分。

证 记\(f = f_1 + \sqrt{-1} f_2\)，其中\(f_1, f_2\)为实值\(C^\infty\)函数。由\(df\)的定义，有

\[
df(u) = u(f) = u(f_1) + \sqrt{-1} u(f_2),
\]

\[
df(Iu) = (Iu)(f) = (Iu)(f_1) + \sqrt{-1} (Iu)(f_2).
\]

所以\((1.5)\)成立当且仅当

\[
u(f_1) = (Iu)(f_2), \quad v(f_2) = -(Iu)(f_1).
\]

取点\(x\)的坐标邻域\(U\)，在\(U \cap O\)上\(T_x(M_\mathbb{R})\)有基

\[
\frac{\partial}{\partial x^i}, \quad \frac{\partial}{\partial y^i}, \quad i = 1, 2, \ldots, n.
\]
于是有
\[I \left(\frac{\partial}{\partial x^i} \right) = \frac{\partial}{\partial y^i}, \quad I \left(\frac{\partial}{\partial y^i} \right) = -\frac{\partial}{\partial x^i}. \]

有
\[\frac{\partial f_1}{\partial x^i} = \frac{\partial f_2}{\partial y^i}, \quad \frac{\partial f_2}{\partial x^i} = -\frac{\partial f_1}{\partial y^i}. \]

此即 Cauchy-Riemann 方程。所以 \(f \) 在 \(O \) 全纯。命题证完。

命题 1.2 设 \(M, N \) 为复流形，\(\phi: M_\mathbb{R} \rightarrow N_\mathbb{R} \) 是 \(C^\infty \) 实映射。则 \(\phi \) 为 \(M \) 到 \(N \) 内的全纯映射当且仅当
\[d\phi \circ I_M = I_N \circ d\phi \]
在 \(T_x(M) \) 上成立，\(\forall x \in M \)，其中 \(d\phi \) 为 \(\phi \) 的微分，又 \(I_M, I_N \) 分别记复流形 \(M, N \) 的复结构。

证明类似于命题 1.1。读者自证之。

将此命题应用于 \(M = N, \phi \) 为恒等映射的情形，设 \(M \) 有复结构 \(I_1, I_2 \)，使恒等映射 \(\phi \) 为全纯映射，则 \(I_1 = I_2 \)。这证明了 \(M_\mathbb{R} \) 上的复结构在恒等映射全纯的条件下由 \(I \) 唯一决定，所以复流形 \(M \) 又可表为 \((M_\mathbb{R}, I) \)。

注意有例子可以说明，在同一个实 \(C^\infty \) 流形 \(M_\mathbb{R} \) 中可以引进不同的标架集，使构成两个复流形，它们的复结构不一样，即在同构下不等价。

定义 2\(n \) 维实 \(C^\infty \) 流形 \(M_\mathbb{R} \) 上若有 \((1, 1) \) 型张量 \(I \)，任取 \(x \in M_\mathbb{R} \)，\(I_x \) 为 \(M_\mathbb{R} \) 的 \(x \) 点的切空间 \(T_x(M_\mathbb{R}) \) 上的 \(C^\infty \) 线性同构，且
\[I_x^* = -\text{id}, \]
则 \(I \) 称为殆复结构，而 \((M_\mathbb{R}, I) \) 称为殆复流形。

这里 \(C^\infty \) 线性同构的意思为：对 \(M_\mathbb{R} \) 的标架 \((U, \phi)\)，\(x \in U \)，\(T_x(M_\mathbb{R}) \) 中有基
\[\left(\frac{\partial}{\partial x^i} \right)_x, \quad i = 1, 2, \ldots, 2n, \]
\[I_x \left(\frac{\partial}{\partial x^i} \right)_x = \sum_{j=1}^{2n} a_{ji}(x^1, \ldots, x^{2n}) \left(\frac{\partial}{\partial x^j} \right)_x, \quad i = 1, 2, \ldots, 2n, \]
其中当 \(x \) 遍历 \(U \)，则 \(a_{ji}(x^1, \ldots, x^{2n}) \) 是 \(\phi(U) \) 上 \(C^\infty \) 函数。

显然，复流形 \(M \) 的复结构 \(I \)，是实流形 \(M_\mathbb{R} \) 的殆复结构。

定义 设 \((M_\mathbb{R}, I) \) 是殆复流形。其殆复结构 \(I \) 称为可积的，如果存在复流形 \(M \)，使得 \(M = (M_\mathbb{R}, I) \)。

已知有不可积的殆复流形存在。例如，6 维球 \(S^6 \)。记 \(G_2 \) 为

\[\cdot \, 73 \cdot \]
Cayley-Dickson 代数上的自同构群构成的 Lie 群，K 为闭子群。同构于 $U(3)$。可证 S^6 的旁集空间表达形式为 G_2/K。在 G_2/K上有殆复结构，它不可积。

定理 1.2 (Newlander-Nirenberg) 设 (M, I) 为殆复流形。则 I 可积当且仅当 $N(X, Y) = 0, \forall X, Y \in \mathfrak{X}(M)$. 这里 N 定义为

$$N(X, Y) = I[X, Y] - [IX, Y] - [X, IY] - I[IX, IY], \forall X, Y \in \mathfrak{X}(M),$$

称为 Nuijenhuis 张量。

证 由 (1.4)，充分性显然，必要性证明请看原书。在 Matsushima [1] 的书中，当 M 及 I 都是解析的情形，有一个相当简单的证明。

回到殆复流形 (M, I). 任取 $x \in M$. 对点 x 的切空间 $T_x(M)$，有线性同构 I_x，使 $I_x^2 = -id$. 于是在 $T_x(M)$ 的复化 $T_x(M)^c$ 上线性同构 I_x 仍有意义。由 $I_x^2 = -id$, 所以对 $T_x(M)$ 中的基，I_x 对应方阵仍记为 I_x. 则相似于对角形，对角元素为 $\pm \sqrt{-1}$. 但 I_x 为实方阵，所以恰好 n 个 $\sqrt{-1}$，n 个 $-\sqrt{-1}$. 相应作根本空间分解

$$T_x(M)^c = T_x(M)^+ + T_x(M)^-, \forall x \in M,$$

其中

$$T_x(M)^+ = \{u \in T_x(M)^c | I_x(u) = \pm \sqrt{-1} u\}.$$

定义 $T_x(M)^+$ 中元素称为 $(1, 0)$ 型切向量，$T_x(M)^-$ 中元素称为 $(0, 1)$ 型切向量。

M 上复向量场 X 称为 $(1, 0)$ 型的 ((0, 1)型的)，如果对每点 $x \in M$, X_x 为 $(1, 0)$ 型的 ((0, 1)型的) 切向量。

例 设 M 为复流形，M 中任取标架 (U, φ)，则

$$\frac{\partial}{\partial z^i}, \frac{\partial}{\partial \bar{z}^i}, \quad i = 1, 2, \ldots, n$$

为 U 上复向量场，前者为 $(1, 0)$ 型的，后者为 $(0, 1)$ 型的。由式

(1.2)，它们全体对 U 中每点，构成该点复切空间中的一组基。

1.3. Hermite 度量和 Kahler 度量

定义 设 (M, I) 为复流形，M_r 为 Riemann 流形，有 Riemann 度量 g。如果 g 适合

$$g_z(I_zu, I_zv) = g_z(u, v), \quad \forall u, v \in T_z(M_r)$$

对一切 $z \in M$ 成立，在 $2n$ 维实线性空间 $T_z(M_r)$ 中用 I_z 引进 $I_zu = \sqrt{-1} u, \forall u \in T_z(M_r)$，于是 $T_z(M_r)$ 为复线性空间，记作 $T_z(M_r)$. 作

$$h_z(u, v) = g_z(u, v) - \sqrt{-1} g_z(I_zu, v), \quad u, v \in T_z(M_r).$$

则易证 $h_z(u, v)$ 为 $T_z(M_r)$ 上定义的 Hermite 型，其实部即 g_z，这时 $h_z(x \rightarrow h_z(x)$ 称为复流形 (M, I) 上的 Hermite 度量，而 (M, h) 称为 Hermite 流形。

可以证明，任一复流形 (M, I) 上必存在 Hermite 度量。事实上，由于熟知实 C^n 流形 M_r 中必存在 Riemann 度量，记作 g_1，取

$$g_z(u, v) = (g_1)_z(u, v) + (g_1)_z(I_zu, I_zv), \quad \forall u, v \in T_z(M_r),$$

对一切 $z \in M$ 成立。则 $x \rightarrow g_z$ 仍为 M_r 的 Riemann 度量，它适合 $g_z(I_zu, I_zv) = g_z(u, v)$。所以可造出 M 上 Hermite 度量 h。

定义 记 (M, h) 为 Hermite 流形。记

$$\Omega_z(u, v) = \text{Re} h_z(I_zu, v), \quad \forall u, v \in T_z(M_r).$$

对一切 $z \in M$ 成立。由于 $\Omega_z(u, v) = -\Omega_z(v, u)$，所以 $x \rightarrow \Omega_z$ 是 M 上二次外微分式，称为 (M, g) 的 Kahler 形式。

如果 $d\Omega = 0$，则 Hermite 度量 h 称为 Kahler 度量，这时 (M, h) 称为 Kahler 流形。

注意，存在复流形，它的任一 Hermite 度量都不是 Kahler 度量。

例 4 $M = \mathbb{C}^n$. $T_z(\mathbb{C}^n_r) \cong \mathbb{C}^n_r$. \mathbb{C}^n 上复结构 I，则在同构 $T_z(\mathbb{C}^n_r) \cong \mathbb{C}^n_r$ 下，I_z 对应 \mathbb{C}^n_r 中向量乘以 $\sqrt{-1}$. 在 (\mathbb{C}^n_r) 中取标准的复 Euclid 度量 g，则 $g_z(u, v) = \text{Re} \bar{u}v$，于是 $h_z(u, v) = \bar{u}v$.

\[\text{.75.} \]
\(\forall u, v \in T_x(\mathbb{C}^n) \). 因此

\[\Omega = -2 \sum_{i=1}^{n} dx^i \cap dy^i, \ x^i + \sqrt{-1} y^i = z^i, \ x^i, y^i \in \mathbb{R}. \]

所以 \(d\Omega = 0 \). 即 \((\mathbb{C}^n, h) \) 为 Kaehler 流形，称为复 Euclid 度量空间。

例 5 Poincaré 上半平面 \(H^2 = \{ z \in \mathbb{C}, \Im z > 0 \} \). 于是 \(H^2 \) 是 \(\mathbb{C} \) 的开子流形，从而 \(H^2 \) 也是复流形。于是 \(T_x(H^2) \cong \mathbb{R}^2 \). Riemann 度量定义为

\[g_x(u, v) = \frac{\langle u, v \rangle}{b^2}, \ \forall u, v \in T_x(H^2). \]

\(\omega^t(a, b) \). 又 \(I_x^t(\xi, \eta) = ^t(-\eta, \xi), \ \forall (\xi, \eta) \in T_x(H^2) \). 于是

\[\Omega_x = \frac{1}{g^2} dx \wedge dy, \ z = x + \sqrt{-1} y \in H^2, \ x, y \in \mathbb{R}. \] 从而 \(d\Omega = 0 \), 即由 \(g \) 给出了 \(H^2 \) 上 Kaehler 度量。这时这个 Kaehler 度量称为 Poincaré 度量。

例 6 由例 3, 给出 \(\mathbb{C}^{n+1} - \{ 0 \} \) 到 \(P^n(\mathbb{C}) \) 上的自然映射 \(\pi \). 于是容易在 \(P^n(\mathbb{C}) \) 中引进 Kaehler 度量，使 Kaehler 形式 \(\Omega \), 有

\[\pi^* \Omega = 4 \sqrt{-1} \sum_{i,j=0}^{n} \frac{\partial^2 \log \|z\|^2}{\partial z^i \partial \bar{z}^j} \ dz^i \wedge d\bar{z}^j. \]

这个度量称为 \(P^n(\mathbb{C}) \) 上 Fubini–Study 度量。

定义 设 \((M, h) \) 为 Hermite 流形，\(A(M, h) \) 为 \(M \) 上关于 \(h \) 的全纯等度量变换群，则 \(A(M, h) \) 称为 \((M, h) \) 的自同构群。

定理 1.8 Hermite 流形 \((M, h) \) 的自同构群 \(A(M, h) \) 是一个有限维实 Lie 群。

证 \(A(M, h) \) 是 Riemann 流形 \((M, g) \) 的等度量变换群 \(I(M, g) \) 的子群，可以证明它是闭子群。由 Cartan 定理，今 \(I(M, g) \) 为 Lie 群，所以 \(A(M, h) \) 也是 Lie 群。证完。

定理 1.4 (H. Cartan) \(\mathbb{C}^n \) 中有界域 \(D \) 上所有全纯自同构构成的群 \(H(D) \) 是一个有限维实 Lie 群。

证 显然 \(\mathbb{C}^n \) 中有界域是开子复流形。熟知在 \(\mathbb{C}^n \) 的有界域中可以引进 Bergman 核函数 \(K(z, \bar{z}) \)，使
$$h = \sum_{i,j=1}^{n} \frac{\partial^2 \log K(z, \bar{z})}{\partial z^i \partial \bar{z}^j} \, dz^i \otimes d\bar{z}^j$$

为 Kaehler 度量, 称为 Bergman 度量。这个度量在 D 的所有全纯自同构下不变。所以这时 $A(D, h) = H(D)$. 由定理 1.3, 所以证明了这个定理。

§2 齐性复流形

定义 设群 G 又是复流形, 使得群运算 $(x, y) \mapsto xy$ 及 $x \mapsto x^{-1}$ 分别是 $G \times G \rightarrow G$ 及 $G \rightarrow G$ 的全纯映射, 则 G 称为复 Lie 群。

设 G 为 n 维复 Lie 群, 显然, 这时 G_R 为 $2n$ 维实 Lie 群。又由群运算为全纯映射, 由命题 1.1, 有 $(dL_a)(I_x u) = I_x (dL_a)(u)$, $(dR_a)(I_x u) = I_x (dR_a)(u)$, 其中 L_a, R_a 分别为关于 a 的左平移和右平移, 而 $a \in G, u \in T_x(G_R), x \in G$. 这证明了复结构 I 是左, 右双重不变张量场。因此它诱导了 G_R 的 Lie 代数 \mathfrak{g}_R 上的线性变换 I, 使得 $I^2 = -i d_0$. 这线性变换还有性质

引理 2.1 $I[X, Y] = [IX, Y] = [X, IY], \forall X, Y \in \mathfrak{g}_R$.

证 任取 $X, Y \in \mathfrak{g}_R$. 由于 Y 为左不变向量场, 所以

$$Ad(a) Y = dR_a \cdot Y,$$

R_a 为 G 的全纯映射, 由命题 1.2, 所以 $Ad(a) IY = IAd(a) Y$, $\forall a \in G$. 取 $a = \exp tX, \forall t \in \mathbb{R}$, 由于 $Ad(\exp tX) = \exp t adX$, 所以有 $\exp t adX IY = I(\exp t adX) Y$. 这推出

$$(adX) IY = I(adX) Y,$$

即 $[X, IY] = I[X, Y]$.

引理证完。

在 \mathfrak{g}_R 中定义 $IX = \sqrt{-1} X, \forall X \in \mathfrak{g}_R$, 这里 I 为复结构。由引理 1.1, \mathfrak{g}_R 成为复 Lie 代数 \mathfrak{g}. 我们称 \mathfrak{g} 为复 Lie 群 G 的 Lie 代数。

例 1 群 $GL(n, \mathbb{C})$ 是 $M_n(\mathbb{C}) = \mathbb{C}^n$ 的开子流形, 可证 $GL(n, \mathbb{C})$ 是复 Lie 群。
例 2 群 \mathbb{C}^n 以及由 \mathbb{C}^n 中离散子群 Γ（称为格）所造的商群
\mathbb{C}^n/Γ 都是交换复 Lie 群。当 Γ 是最大秩的格时，\mathbb{C}^n/Γ 是紧的，
称为复环面。

引理 2.2 连通交换复 Lie 群同构于 \mathbb{C}^n/Γ。

证明 今 G 为连通交换复 Lie 群，所以 $G_\mathbb{R}$ 是连通交换 Lie 群。
于是 $\exp : g_\mathbb{R} \to G_\mathbb{R}$ 是到上的同态，同态核为离散子群 Γ。下面证
$\exp : g \to G$ 是全纯映射。由命题 1.2，记 $g - \mathbb{C}^n$ 的复结构为 I_1，G
的复结构为 I_2，问题化为证 $(d\exp)_x(I_1)_x = (I_2)_{exp}(d\exp)_x$。首
先，取 $X = 0$。由于 $T_0(g_\mathbb{R})$，$T_0(G)$ 都可以看作是 $g_\mathbb{R}$。在这意义
下 $d\exp_0$ 为恒等映射。而且 $(I_2)_0$，$(I_2)_x$ 可看作 $g_\mathbb{R}$ 上同一个线性
映射。所以 $(d\exp)_0(I_1)_0 = (I_2)_0(d\exp)_0$。由于 I_2 为 G 上双不变
张量场，$g - \mathbb{C}^n$ 作为 n 维复交换 Lie 群，I_1 为 \mathbb{C}^n 上双不变张量场，
所以证明了 $(d\exp){I_1} = (I_2)_{d\exp}$。这证明了 \exp 为全纯映射。
由 Lie 群同态基本定理可知 $G \cong \mathbb{C}^n/\Gamma$。引理证完。

定义 2.1 连通复 Lie 群 G 是一个复环面。

证明 记 G 的复 Lie 代数为 g。由 G 紧，所以在 g 上存在
Hermite 内积 h 使 h 在 g 下不变，即
$$h([X, Y], Z) + h(Y, [X, Z]) = 0, \forall X, Y, Z \in g.$$ 再由 $\sqrt{-1}X \in g$，所以用 $\sqrt{-1}X$ 代替 X，便有
$$\sqrt{-1}h([X, Y], Z) - \sqrt{-1}h(Y, [X, Z]) = 0,$$
这证明了 $h([X, Y], Z) = 0, \forall Z \in g$。于是 $[X, Y] = 0, \forall X, Y \in g$。此即 G 为交换群。由引理 2.2 及 G 的紧性，便证明了定
理。

定义 设 G 为复 Lie 群，H 为复子流形，使得 $H_\mathbb{R}$ 为 $G_\mathbb{R}$ 的实
Lie 子群，则 H 是一个复 Lie 群，称为复 Lie 群 G 的复 Lie 子群。
可以证明，如果 G 为复 Lie 群，H 为 G 的闭复子群，则旁集
空间 G/H 中可以引进复结构，使 G/H 为复流形，且自然映射 $\pi : G \to G/H$ 为全纯映射。又 G 在 G/H 上作用所定义的映射
$G \times G/H \to G/H$ 也是全纯映射。

定义 设 M 是流形，具有复结构 I。$M_\mathbb{R}$ 上向量场 X 称为
保角的，如果

\[[X, Y] = I[X, Y], \quad \forall Y \in \mathfrak{X}(M_r). \]

引理 2.3 复流形 \(M \) 中任取标架 \((U, \varphi) \)，使 \(U \) 内点坐标为

\[(z^1, \ldots, z^n), \]

则 \(\mathfrak{X}(M_r) \) 中元在 \(U \) 上可写成

\[X = \sum_{i=1}^{n} f_i \frac{\partial}{\partial z^i} + \sum_{i=1}^{n} \overline{f}_i \frac{\partial}{\partial \bar{z}^i}. \]

其中 \(f_i, i = 1, 2, \ldots, n \) 为 \(\varphi(U) \) 上 \(C^\infty \) 函数，\(\overline{f}_i \) 为 \(f_i \) 的复共轭。

这时 \(X \) 为保角向量场当且仅当 \(f_i, i = 1, 2, \ldots, n \) 为 \(\varphi(U) \) 上全纯函数。

- 证 今 \(X \) 为实 \(C^\infty \) 向量场，自然 \(f_i \) 为 \(C^\infty \) 函数。今对任一 \(C^\infty \) 向量场 \(Y \)，它在 \((U, \varphi) \) 之局部坐标表达式为

\[Y = \sum_{i=1}^{n} a_i \frac{\partial}{\partial z^i} + \sum_{i=1}^{n} \overline{a}_i \frac{\partial}{\partial \bar{z}^i}. \]

则由于式 (1.2) 及 (1.4)，有

\[I\left(\frac{\partial}{\partial z^i} \right) = \sqrt{-1} \frac{\partial}{\partial z^i}, \quad I\left(\frac{\partial}{\partial \bar{z}^i} \right) = -\sqrt{-1} \frac{\partial}{\partial \bar{z}^i}. \]

又 Cauchy–Riemann 方程

\[\frac{\partial \Re f}{\partial x^i} = \frac{\partial \Im f}{\partial y^i}, \quad \frac{\partial \Im f}{\partial x^i} = -\frac{\partial \Re f}{\partial y^i}, \quad i = 1, 2, \ldots, n, \]

可以改写为

\[\frac{\partial f_i}{\partial z^i} = 0, \quad i = 1, 2, \ldots, n. \]

今由直接计算可知

\[I[X, Y] - [X, Y] = -2\sqrt{-1} \sum_{i=1}^{n} a_i \frac{\partial \overline{f}_i}{\partial \bar{z}^k} \frac{\partial}{\partial z^i} - 2\sqrt{-1} \sum_{i=1}^{n} \overline{a}_i \frac{\partial f_i}{\partial \bar{z}^k} \frac{\partial}{\partial z^i}. \]

故 \(X \) 保角当且仅当 \(I[X, Y] - [X, Y] = 0, \quad \forall Y \in \mathfrak{X}(M_r) \)。这证明了当且仅当 \(\frac{\partial f_i}{\partial z^k} = 0, \quad 1 \leq i, k \leq n \) 时，即 \(f_i \) 适合 Cauchy–Riemann 方程，即 \(f_1, \ldots, f_n \) 在 \(\varphi(U) \) 上全纯。引理证完。

设 \(M \) 为复流形，设 \(M \) 上所有保角向量场构成实 Lie 代数。另一方面，易证对保角向量场 \(X, IX \) 也是保角向量场。所以用 \(IX \)
定义 $\sqrt{-1}X_n$，则这个保角向量场构成的实 Lie 代数变成复 Lie 代数，记作 \mathfrak{g}.

设 M 为复流形，$H(M)$ 记 M 上所有全纯自同构构成的群。一般地说，$H(M)$ 没有 Lie 群结构。例如，当 $M = \mathbb{C}^*$ 时，$H(\mathbb{C}^*)$ 是一个很大的群。但是在 M 是紧复流形时，有下面定理：

定理 2.2 (Bochner-Montgomery) 设 M 是一个紧复流形，则 M 上的全纯自同构全体构成的群 $H(M)$ 有一个复 Lie 群结构。使得 $H(M)$ 在 M 上的作用所定义的映射 $H(M) \times M \to M$ 是全纯映射。又 $H(M)$ 的复 Lie 代数 \mathfrak{g} 自然地同构于 \mathfrak{g}。

证明请见 Kobayashi-Nomizu [18] 第 3 章，定理 1.1。

定义 n 维复流形 M 称为复可平行的，如果存在保角向量场 X_1, \cdots, X_n，使得对每点 $x \in M$，则 $(X_1)_x, \cdots, (X_n)_x, (IX_1)_x, \cdots, (IX_n)_x$ 生成该点之切空间 $T_x(M)$。

例 3 设 G 为复 Lie 群，\mathfrak{g} 为 G 的复 Lie 代数。显然，\mathfrak{g} 的基 $\{X_1, \cdots, X_n\}$ 由保角向量场构成，且使 G 为复可平行流形。

记 Γ 为 G 的离散子群，则有自然映射 $\varphi: G \to G/\Gamma$。易证 φ 为全纯映射。对 G 的右不变向量场构成的 Lie 代数 \mathfrak{g}_χ 中取定一组基 Y_1, \cdots, Y_n。则 $d\varphi(Y_1), \cdots, d\varphi(Y_n)$ 为 G/Γ 的保角向量场，且使 G/Γ 为复可平行流形。

定理 2.3 (王宪钟) 设 M 为连通紧复可平行流形，则 M 可表为 G/Γ，其中 G 是连通复 Lie 群，Γ 是 G 的离散子群。

证 由于 M 为复可平行流形，所以存在保角向量场 $X_1, \cdots, X_n (n = \dim_{\mathbb{C}} M)$，使得 $(X_1)_x, \cdots, (X_n)_x, (IX_1)_x, \cdots, (IX_n)_x$ 构成 $T_x(M)$ 的一组基，$\forall x \in M$。引进 $IX_i = \sqrt{-1}X_i$。于是

$$[X_i, X_j] = \sum_{k=1}^n f_{ij}^k X_k, \quad 1 \leqslant i, j \leqslant n,$$

其中 f_{ij}^k 为复值 C^∞ 函数。令 X_1, \cdots, X_n 保角，所以 $[X_i, X_j]$ 也保角。由引理 2.3，易证 f_{ij}^k 为 M 上全纯函数。但 M 紧，由定理

1.1, \(f_i \) 为常数，这证明了 \(X_1, \ldots, X_n \) 为基的复线性空间是一个复 Lie 代数，记作 \(g \)。但由于定理 2.2，所有保角向量场构成的复 Lie 代数为复 Lie 群 \(H(M) \) 的复 Lie 代数，所以 \(g \) 为其子代数，于是在 \(H(M) \) 中唯一存在一个连通复 Lie 子群 \(G \)，以 \(g \) 为 Lie 代数。

现在证 \(G \) 在 \(M \) 上作用可逆。事实上，由于 \(\{(X_1)_x, \ldots, (X_n)_x, (IX_1)_x, \ldots, (IX_n)_x\} \) 生成 \(T_x(M) \)，\(\forall x \in M \)，所以 \(G \) 的轨道的实维数等于 \(M \) 的实维数，所以为 \(M \) 中开集。但是 \(M \) 连通，所以 \(G \) 的轨道只有一个，即 \(G \) 在 \(M \) 上可逆。对 \(M \) 中取定一点的 \(G \) 中连向子群记作 \(\Gamma \)，则 \(\Gamma \) 为闭 Lie 子群。再由 \(G \times M \to M \) 为全纯映射，即 \(G \) 在 \(M \) 上是纯地作用，所以 \(G/\Gamma \) 为复流形，且 \(M \) 和 \(G/\Gamma \) 作为复流形是全纯同构的。

余下证 \(\Gamma \) 为离散子群。事实上，
\[
\dim G_R = \dim g_R = 2n = \dim M_R = \dim G_R - \dim \Gamma_R.
\]
这证明了 \(\dim \Gamma = 0 \)，即 \(\Gamma \) 离散。定理证完。

注意，王东明还证明了若 \(M \) 为连通可平行的 Kaehler 流形，则 \(M \) 是复环面，于是也给出了 Hermite 流形不是 Kaehler 流形的例子。

定义 设 \(M \) 为复流形，若一批全纯自同构构成一个实 Lie 群 \(G \)，使 \(G \) 在 \(M \) 上作用全纯且可逆，则 \(M \) 称为齐性复流形。

这时在 \(M_R \) 中取定一点，由 \(G \) 在 \(M_R \) 上作用可逆，故 \(G \) 中该点的连向子群 \(H \) 为闭子群，而 \(M \) 可表为旁集空间 \(G/H \)。我们记作 \(M = G/H \)。

例 4 设 \(G \) 为复 Lie 群，\(H \) 为 \(G \) 的闭子群，则旁集空间 \(G/H \) 中可以引进自然的复结构，使 \(G/H \) 为复流形，且 \(G \) 在 \(G/H \) 上作用全纯且可逆。所以 \(M \) 是齐性复流形。

例 5 设 \(D \) 为 \(\mathbb{C}^n \) 中有界域。由定理 1.4，\(H(D) \) 为实 Lie 群。设 \(H(D) \) 在 \(D \) 上作用可逆，则 \(D \) 为齐性复流形，称为齐性有界域。

这时 \(H(D) \) 中不可能有复结构，使 \(H(D) \) 为在 \(D \) 上作用全纯的复 Lie 群。这是因为如果 \(H(D) \) 为复 Lie 群，则它的任一复参数子群的任一轨道有界。由 Liouville 定理，\(\mathbb{C} \) 上有界全纯函数
必为常数。这证明了复单参数子群的轨道由点构成，这和 $H(D)$ 可递矛盾。

定义 设 G 为实 Lie 群，H 为其闭子群。如果旁集空间 G/H 上存在复结构，使得 G 在 G/H 上作用全纯，则 G/H 称为复旁集空间。

显然，齐性复流形可表为复旁集空间。反之，复旁集空间必为齐性复流形。

§ 3 旁集空间上的不变复结构

定义 设 I 为 (殆) 复流形 M 的 (殆) 复结构。对 M 上一批 C^∞ 自同胚构成的 Lie 群 G，如果 G 由 M 的全纯自同构构成，且 $G \times M \to M$ 是全纯映射，则 (殆) 复结构 I 称为 G 不变的。

所以 (殆) 复流形 M 的 (殆) 复结构 I 在 G 下不变当且仅当

$$d\sigma \circ I_x = I_{\sigma(x)} \circ d\sigma, \quad \forall \sigma \in G, \; x \in M.$$

下面在旁集空间 G/H 的情形，给出它有 G 不变殆复结构的必要且充分条件。

记 G 为实 Lie 群，H 为闭子群。记 $\mathfrak{g} = \text{Lie } G, \; \mathfrak{h} = \text{Lie } H$. 设 π 为自然映射 $G \to G/H$. 取 $0 = \pi(e)$. 已知 $T_e(G/H) \cong \mathfrak{g}/\mathfrak{h}$, 而 H 在 $T_e(G/H)$ 上的轨向表示变为 $\mathfrak{g}/\mathfrak{h}$ 上的表示 $Ad_{\mathfrak{g}/\mathfrak{h}}$。

引理 3.1 旁集空间 G/H 上有 G 不变殆复结构的必要且充分条件为在 $\mathfrak{g}/\mathfrak{h}$ 上有线性变换 I_0, 使得

(3.1) \quad I_0^2 = -id_{\mathfrak{g}/\mathfrak{h}},

(3.2) \quad Ad_{\mathfrak{g}/\mathfrak{h}}(h) \circ I_0 = I_0 Ad_{\mathfrak{g}/\mathfrak{h}}(h), \quad \forall h \in H.

证 设旁集空间 G/H 有 G 不变复结构 I. 于是有 $I^2 = -id$, 且

$$d\tau_0 \circ I_x = I_{\tau_0(x)} \circ d\tau_0, \quad \forall \alpha \in G, \; x \in G/H.$$

因此取 $x = (e) = \pi(e)$, 于是 $ax = a \cdot 0 = \pi(ae) = \pi(a)$, 而

$$d\tau_0 \circ I_0 = I_{\pi(0)} \circ d\tau_0, \quad \forall \alpha \in G.$$

特别取 $a = h \in H$, 则由 $\pi(h) = 0$, 有 $d\tau_0 \circ I_0 = I_0 \circ d\tau_h, \; \forall h \in H$. 在

- 82 -
同构 $T_0(G/H) \cong \mathfrak{g}/\mathfrak{h}$ 下，定义表示 $h \to d\tau_h$ 变为 $h \to Ad_0 h' h$。且 $I_0' = -id_{\mathfrak{g}/\mathfrak{h}}$。这证明了 (3.1) 及 (3.2) 成立。

反之，设 $\mathfrak{g}/\mathfrak{h}$ 上有线性变换 I_0 适合 (3.1), (3.2)。于是在同构 $\mathfrak{g}/\mathfrak{h} \cong T_0(G/H)$ 下，在 $T_0(G/H)$ 上存在线性变换 I_0，适合 $I_0' = -id_{T_0(G/H)}$，且 $d\tau_h I_0 = I_0 o d\tau_h, \forall h \in H$。在 $T_0(G/H)$ 上定义线性变换 $I_x = d\tau_a o I_0 o d\tau_a^{-1}$，其中 $a \in G, \pi(a) = x$。可证 $d\tau_a I_0 o d\tau_a^{-1}$ 与 α 的代表元选取无关，且 $I; x \to I_x$ 为 C^∞ 映射。自然 $I_x' = -id_{T_0(G/H)}$，即有 $I' = -id_{\mathfrak{g}/\mathfrak{h}}$，且 $d\tau_\alpha o I_x = I_{\alpha x} o d\tau_\alpha, \forall \alpha \in G, x \in G/H$。即 I 为 G 不变殆复结构，引理证完。

显然，由 (3.2) 可以推出

$$ad_{\mathfrak{g}/\mathfrak{h}}(X) \circ I_0 = I_0 o ad_{\mathfrak{g}/\mathfrak{h}}(X), \forall X \in \mathfrak{h}.$$

反之，若 H 连通，则 (3.3) 等价于 (3.2)。

引理 3.2 除了空间 G/H 有 G 不变殆复结构的必要且充分条件为在 \mathfrak{g} 上有线性变换 J，使得

(3.4) $\pi(JX) = I_0 \pi(X), \forall X \in \mathfrak{g},$

(3.5) $J(\mathfrak{h}) = (0),$

(3.6) $J^2(X) = -X, (mod \mathfrak{h}), \forall X \in \mathfrak{g}$

(3.7) $Ad(h) J = J Ad(h), (mod \mathfrak{h}), \forall h \in H.$

其中 $\pi: \mathfrak{g} \to \mathfrak{g}/\mathfrak{h}$ 为自然映射。

证 由引理 3.1，显然存在 \mathfrak{g} 的子空间直接和分解 $\mathfrak{g} = m + \mathfrak{h}$，使得作为线性空间 $m \cong \mathfrak{g}/\mathfrak{h}$。于是由 $\mathfrak{g}/\mathfrak{h}$ 上适合条件 (3.1), (3.2) 的线性变换 I_0 可以定义 \mathfrak{g} 上线性变换 J，使得 (3.4) 成立。事实上，任取 $\mathfrak{g}/\mathfrak{h}$ 中元 $X + \mathfrak{h}$。由 $X \in \mathfrak{g} = m + \mathfrak{h}$，故 $X = Y + Z, Y \in m, Z \in \mathfrak{h}$。因此 $\mathfrak{g}/\mathfrak{h}$ 中元可表为 $Y + \mathfrak{h}$，其中 $Y \in m$。记 $I_0(Y + \mathfrak{h}) = Y_1 + \mathfrak{h}$，其中 $Y_1 \in m$。于是定义了 $J(Y) = Y_1$。易证它在 m 上线性变换。再用 (3.5) 定义 $J\mathfrak{h} = 0$。从而在 \mathfrak{g} 上定义了线性变换 J。显然从 (3.1) 可推出 (3.6)，从 (3.2) 可推出 (3.7)。

反之，按照 (3.4) 定义的 $\mathfrak{g}/\mathfrak{h}$ 上线性变换 I_0 适合条件 (3.1), (3.2)，由引理 3.1 便证明了引理。

显然，从 (3.7) 可以推出
(3.8) \((adX)J = J(adX), \quad (\mod \mathfrak{h}), \quad \forall X \in \mathfrak{h}\).

反之，若 \(H\) 连通，则 (3.8) 等价于 (3.7)。

定义 引理 3.2 给出的 \(\mathfrak{g}\) 上线性变形 \(J\) 称为对应于 \(G/H\) 上 \(G\) 不变残复结构 \(I\) 的 Koszul 算子。

由于 Koszul 算子 \(J\) 是 \(G\) 的 Lie 代数 \(\mathfrak{g}\) 上的线性变换，所以 \(J\) 也是 Lie 群 \(G\) 上左不变 (1.1) 型张量。

上面给出了旁集空间 \(G/H\) 有 \(G\) 不变残复结构，反映在 \(\mathfrak{g} = \text{Lie} G\) 上的必要且充分条件，下面给出有 \(G\) 不变复结构的必要且充分条件。为此引进

定义 设 \(G/H\) 为旁集空间，\(\pi: G \to G/H\) 为自然映射，\(G\) 上向量场 \(U\) 称为射影向量场，如果 \(d\pi(U)\) 是 \(G/H\) 上的向量场，即存在 \(G/H\) 上向量场 \(\hat{U}\)，使得 \(d\pi_a(U_a) = \hat{U}_{\pi(a)}\)。

记 \(G\) 上所有射影向量场构成的集合为 \(\delta\)，记 \(G\) 上所有右不变向量场构成的集合为 \(\mathfrak{g}_r\)。则显然 \(\mathfrak{g}_r\) 为 Lie 代数，且有

引理 3.3 a) \(\delta\) 为 \(\mathfrak{k}(G)\) 的 Lie 代数，又 \(d\pi\) 诱导了 Lie 代数的同态，\(\delta \to \mathfrak{k}(G/H)\).

b) \(\mathfrak{g}_r\) 为 \(\delta\) 的子代数。

c) \(I, J\) 定义如上，则 \(J(\delta) \subset \delta\)，且 \(d\pi(U + V) = d\pi(U)\)。

证 a) 今任取 \(U, V \in \delta, \lambda \in \mathbb{R}\)，则由于
\[
\begin{align*}
 d\pi(\lambda U) &= \lambda d\pi(U), \\
 d\pi(U + V) &= d\pi(U) + d\pi(V), \\
 d\pi([U, V]) &= [d\pi(U), d\pi(V)].
\end{align*}
\]

所以证明了 \(\delta\) 是 \(\mathfrak{k}(G)\) 的 Lie 子代数（参考 Chevalley[6]）。显然 \(U \to d\pi(U)\) 是 \(\delta\) 到 \(\mathfrak{k}(G/H)\) 内的 Lie 代数同态。a) 证完。

b) 由于 \(\pi \circ R_h = \pi, \forall h \in H\)。于是
\[
(d\pi)(X_a) = (d\pi)(X_a), \quad \forall X \in \mathfrak{k}(G), h \in H, a \in G.
\]

今若 \(X \in \mathfrak{g}_r\)，则 \((dR_h)(X_a) = X_{ah}\)。所以有
\[
(d\pi)(X_{ah}) = (d\pi)(X_a), \quad \forall h \in H.
\]

这证明了 \((d\pi)X\) 在 \(G/H\) 上有意义，即为 \(G/H\) 上向量场。所以
记 $X \in Z$，即 $g_{\alpha} \subset \delta$. b) 证完.

e) 今任取 $a \in G$, 则任取 $U \in \delta$,

$$
(d\pi_a)(J_a U_a) = (d\pi_a)((dL_a)J_e((dL_a)^{-1}U_a))
$$
$$
= d\tau_a(d\pi_a J_e((dL_a)^{-1}U_a))
$$
$$
= d\tau_a \circ I_0 \circ d\pi_a((dL_a)^{-1}U_a)
$$
$$
= (d\tau_a \circ I_0 \circ d\tau_a^{-1})(d\pi_a(U_a))
$$
$$
= I_{\pi(a)}d\pi_a(U_a)
$$
这证明了 $d\pi(JU) = Id\pi(U)$, $\forall U \in \delta$. 且由 U 为 G 上射影向量场，即 $Id\pi(U)$ 为 G/H 上向量场，从而 JU 也为 G 上射影向量场. e) 证完. 引理证完.

现在来证明

定理 3.1 (Koszul) 设 I 为旁集空间 G/H 上 G 不变的殆复结构, J 为对应的 Koszul 算子, 则 I 可积当且仅当 J 适合条件

$$(3.9) \quad J[X, Y] - [JX, Y] - [X, JY] - J[JX, JY] = 0, \; \; (\text{mod } \delta), \; \forall X, Y \in \mathfrak{g}.$$

证 任取 $U, V \in \mathfrak{x}(G)$, 记

则 S 是 $\mathfrak{x}(G) \times \mathfrak{x}(G)$ 到 $\mathfrak{x}(G)$ 内的实斜对称双线性映射，且
$$ S(fU, V) = S(U, fV) = fS(U, V), \quad \forall f \in C^\infty(G). $$

所以 S 是 G 上 $(1, 2)$ 型张量场.

今取 $U, V \in \delta$, 则由引理 3.3 的 a) 及 e), 故 $S(U, V) \in \delta$, 且有

$$(3.11) \quad d\pi(S(U, V)) = N(d\pi(U), d\pi(V)), $$

其中 N 为定理 1.2 给出的 Nijenhuis 张量 (1.6). 设若 I 可积.

由定理 1.2, $N = 0$, 即

$$(3.12) \quad d\pi(S(U, V)) = 0, \; \forall U, V \in \delta.$$

由引理 3.3 的 b), $g_{\alpha} \subset \delta$, 而任取 $a \in G$, 已知 $T_a(G) = \{U_a | \forall U \in g_{\alpha}\}$. 所以由 (3.12) 推出

$$(3.13) \quad (d\pi)_a(S(u, v)) = 0, \; \forall u, v \in T_a(G), \; a \in G.$$
另一方面，已知 $T_o(G) = \{ X_0 | \forall X \in g \}$. 所以由 (3.13) 有
\[(d\pi)_o(S(X_0, Y_0)) = 0, \quad \forall X, Y \in g, a \in G.\]

今 $d\pi^{-1}_a(0) = \{ X_0 | X \in h \}, \forall a \in G$. 这证明了 $S(X, Y) \in h$, $\forall X, Y \in g$, 即 (3.9) 成立.

反之，若 (3.9) 成立，按上面讨论，反过来可证 (3.12) 成立。所以由 (3.11)，有 $N(d\pi(U), d\pi(V)) = 0, \forall U, V \in \mathfrak{g}$. 由于任取 $x \in G/H$，则对 $T_o(G/H)$ 中任一元，存在 $U \in \mathfrak{g}$，使 $d\pi(U)x = u$. 所以有 $N(u, v) = 0, \forall u, v \in T_o(G/H), x \in G/H$. 这证明了 $N = 0$.

由定理 1.2，G/H 的 G 不变殆复结构 I 可积。定理证完。

上面对旁集空间 G/H 有 G 不变殆复结构 I. 将 I 的可积条件用 G 的 Lie 代数 \mathfrak{g} 适合关系 (3.9) 来刻划。下面将 I 的可积条件用 \mathfrak{g}^c 的子代数来刻划。为此，先引进这个子代数。

设 G 为 Lie 群，H 为子群，G/H 为旁集空间。设 G/H 上有 G 不变殆复结构 I. 于是有 $T_o(G/H)$ 上有线性变换 I_0, 使 $I_0^2 = -id$. 今已知自然映射 $\pi: G \to G/H$ 诱导了 $d\pi: \mathfrak{g} \to T_o(G/H)$，其中 $0 = \pi(0)$. 又知它诱导了线性同构 $\mathfrak{g}^c = T_o(G/H)$. 在此同构下，$T_o(G/H)$ 上的线性变换 I_0 变为 \mathfrak{h}^c 上的线性变换，仍用 I_0 记之。

由引理 3.1 有 $I_0^2 = -id$, $I_0ad_{\mathfrak{h}^c}(X) = ad_{\mathfrak{h}^c}(X)I_0, \forall X \in \mathfrak{h}^c$. 今考虑 \mathfrak{g}^c 的复化 $(\mathfrak{g}^c)^c$. 实线性变换可以扩充为复线性空间 $(\mathfrak{g}^c)^c$ 上的线性变换，仍用 I_0 记之。由条件 $I_0^2 = -id_{\mathfrak{h}^c}$，所以 $(\mathfrak{g}^c)^c$ 关于线性变换 I_0 的根子空间分解为
\[(g/h)^c = (g/h)^+ + (g/h)^-.\]
使 I_0 在 $(g/h)^\pm$ 上为纯量变换 $\pm \sqrt{1-i}, i \pi_{(g/h)^c}$.

今对自然映射 $\pi: \mathfrak{g} \to \mathfrak{h}^c$, 它可扩充为映射 $\pi^c: \mathfrak{g}^c \to (g/h)^c$, 使核为 \mathfrak{h}^c. 令
\[(x) = (\pi^c)^{-1}(g/h)^+).\]
对共轭“"”，由于 $\pi^c(X) = \pi^c(X), \forall X \in \mathfrak{g}^c$, 所以有 $(g/h)^c = (g/h)^c$, 故记 $\tilde{a} = \{ X \in \mathfrak{g}^c | X \in a \}$，则
\[\tilde{a} = (\pi^c)^{-1}(g/h)^c).\]
至此，从 G/H 有 G 不变直积结构，定义了 $(g/h)^\infty$ 中子空间 α，使得下面分解式成立：

(3.17) \quad g^\infty = \alpha + \bar{\alpha}, \quad \alpha \cap \bar{\alpha} = h^\infty.

现在来证明

(3.18) \quad [h^\infty, \alpha] \subseteq \alpha.

事实上，由于式 (3.2)，若 $X \in h^\infty$, $Y \in \alpha$，则有

$$I_0 \pi ([X, Y]) = I_0 \pi (a d_{\infty} X) Y = I_0 (a d_{\infty} X) \pi (Y)$$

$$= (a d_{\infty} X) \pi (Y),$$

由 $\pi (Y) \in (g/h)^\infty$，所以 $I_0 \pi (Y) = \sqrt{-1} \pi (Y)$，即有

$$I_0 \pi ([X, Y]) = \sqrt{-1} a d_{\infty} (X) \pi (Y) = \sqrt{-1} \pi ([X, Y]).$$

这证明了 $\pi [X, Y] \subseteq (g/h)^\infty$，故 $[X, Y] \subseteq \alpha$，这证明了式 (3.18) 成立。

再来考虑 Koszul 算子，已知对于对应于 I 的 Koszul 算子 J，存在 α 的子空间的直接和分解 $\alpha = h \cap m$，使得 $J(h) = 0$, $J(m) = m$，且在 m 上 $J^2 = - i d_m$。又由引理 3.2, J 适合 (3.4)～(3.7)。显然 $g^\infty = h^\infty + m^\infty$。由于 $\alpha \supset h^\infty$。所以对空间直接和分解，有 α 的空间直接和分解

(3.19) \quad \alpha = h^\infty + n^+,

其中 $n^+ = \alpha \cap m^\infty$。记 $n^- = \bar{\alpha} \cap m^\infty$，则有空间直接和

(3.20) \quad \bar{\alpha} = h^\infty + n^-.

注意 $m^\infty \cap h^\infty = (0)$，故 $n^+ \cap n^- = (0)$。且有空间直接和

(3.21) \quad g^\infty = h^\infty + n^+ + n^-, \quad \bar{n}^+ = n^-.

将 J 扩充为 g^∞ 上的线性变换，记作 J^∞。则由 (3.4) 式有

$$\pi^\infty (J^\infty X) = I_0 \pi^\infty (X), \quad \forall X \in g^\infty.$$

这证明了 $J^\infty (a) \subseteq \alpha, J^\infty (\bar{\alpha}) \subseteq \bar{\alpha}$。又已知 $J^\infty (m^\infty) = m^\infty$。所以证明了 $J^\infty (n^+) \subseteq n^+$。注意 $\pi^\infty: g^\infty \to (g/h)^\infty$ 导出到上的线性同构 $\pi^\infty: m^\infty \to (g/h)^\infty$。所以有

$$J^\infty (X) = \begin{cases} \sqrt{-1} X, & X \in n^+, \\ -\sqrt{-1} X, & X \in n^-, \\ 0, & X \in h^\infty. \end{cases}$$

- 87 -
定理 3.2 设 I 为子集空间 G/H 上的 G 不变殆复结构。按照上面的叙述，定义了 \mathfrak{a} 中复子空间 a，它适合 (3.17)，(3.18)。反之，如果 H 通量，且 \mathfrak{a} 中有复子空间 a，适合 (3.17)，(3.18)；则它唯一决定了 G/H 上一个 G 不变殆复结构 I。

证 必要性上面已证，下面证充分性。今已知 $\mathfrak{a} = \mathfrak{a} + \mathfrak{a}$，$\mathfrak{a} \cap \overline{\mathfrak{a}} = \mathfrak{h}_{\mathfrak{a}}$, $[\mathfrak{h}, \mathfrak{a}] \subset \mathfrak{a}。$ 对自然映射 $\pi: \mathfrak{a} \rightarrow \mathfrak{a}/\mathfrak{h}$，诱导了 $\pi^\mathfrak{e}: \mathfrak{a}^\mathfrak{e} \rightarrow (\mathfrak{a}/\mathfrak{h})^\mathfrak{e}。$ 于是 $(\mathfrak{a}/\mathfrak{h})^\mathfrak{e}$ 有空间直接分解 $(\mathfrak{a}/\mathfrak{h})^\mathfrak{e} = \pi_\mathfrak{e}(\mathfrak{a}) + \pi_\mathfrak{e}(\overline{\mathfrak{a}})。$ 由 $\pi_\mathfrak{e}(\mathfrak{a}) = \overline{\pi_\mathfrak{e}(\mathfrak{a})}$，于是在 $\mathfrak{a}/\mathfrak{h}$ 上有线性变换 I_0，使 $I_0^\mathfrak{e}$ 在 $\pi_\mathfrak{e}(\mathfrak{a})$ 上为 $\sqrt{-1} id$，在 $\pi_\mathfrak{e}(\overline{\mathfrak{a}})$ 上为 $-\sqrt{-1} id$。因此 $I_0^\mathfrak{e} = -id_{\mathfrak{a}^\mathfrak{e}}$。再由 $[\mathfrak{h}, \mathfrak{a}] \subset \mathfrak{a}$，有 $[\overline{\mathfrak{h}}, \overline{\mathfrak{a}}] \subset \overline{\mathfrak{a}}$。

现在来证明 $ad_{\mathfrak{a}^\mathfrak{e}}(X) I_0 = I_0 ad_{\mathfrak{a}^\mathfrak{e}}(X)$，对任取 $u \in \mathfrak{a}/\mathfrak{h}$，所以 $u = v + \overline{v}$，$v \in (\mathfrak{a}/\mathfrak{h})^+$，$\mathfrak{a}$。因此 $v = Z + \mathfrak{h}^\mathfrak{e}$，$Z \in \mathfrak{a}$，于是 $[X, Z] \subset \mathfrak{a}$，$[X, Z] + \mathfrak{h}^\mathfrak{e} \subset (\mathfrak{a}/\mathfrak{h})^+$。今

$$I_0 ad_{\mathfrak{a}^\mathfrak{e}}(X) u = I_0 ad_{\mathfrak{a}^\mathfrak{e}}(X) (v + \overline{v}) = I_0 ad_{\mathfrak{a}^\mathfrak{e}}(X) (Z + \overline{Z} + \mathfrak{h}^\mathfrak{e})$$

$$= I_0 ([X, Z] + \mathfrak{h}^\mathfrak{e}) + ([X, Z] + \mathfrak{h}^\mathfrak{e})$$

$$= \sqrt{-1} (\mathfrak{a} + \mathfrak{e} + \mathfrak{e}) - \sqrt{-1} (\mathfrak{a} + \mathfrak{e} + \mathfrak{e})$$

$$= ad_{\mathfrak{a}^\mathfrak{e}}(X) (\sqrt{-1} v - \sqrt{-1} \overline{v})$$

$$= ad_{\mathfrak{a}^\mathfrak{e}}(X) I_0 u$$

这证明了 $I_0 ad_{\mathfrak{a}^\mathfrak{e}}(X) = ad_{\mathfrak{a}^\mathfrak{e}}(X) I_0$，对任 $u \in \mathfrak{a}/\mathfrak{h}$。

今 H 通量，所以它等价于 $\Delta ad_{\mathfrak{a}^\mathfrak{e}}(h) I_0 = I_0 \Delta ad_{\mathfrak{a}^\mathfrak{e}}(h)$，对任 $h \in H$。由引理 3.1，便证明了 G/H 上有 G 不变殆复结构 I，定理证完。

定理 3.3 代数空间 G/H 有 G 不变复结构当且仅当 \mathfrak{a} 有复子代数 \mathfrak{a}，使 $\mathfrak{a} = \mathfrak{a} + \overline{\mathfrak{a}}$，$\mathfrak{a} \cap \overline{\mathfrak{a}} = \mathfrak{h}$。

证 定理 3.2 告诉我们，G/H 有 G 不变殆复结构的必要且充分条件为 \mathfrak{a} 有复子空间 \mathfrak{a}，使 $\mathfrak{a} = \mathfrak{a} + \overline{\mathfrak{a}}$，$\mathfrak{a} \cap \overline{\mathfrak{a}} = \mathfrak{h}$；又 $[\mathfrak{h}, \mathfrak{a}] \subset \mathfrak{a}$。

由定理 3.1 可知，I 可积当且仅当 Koszul 算子 J 适合 (3.9)，即
\[(3.23) \quad J^c[X, Y] - [J^cX, Y] - [X, J^cY] \\
- J^c[J^cX, J^cY] \in \mathfrak{h}^c,
\]
\(\forall X, Y \in \mathfrak{h}^c\). 下面证明在 \(g^c = a + \overline{a}, a \cap \overline{a} = \mathfrak{h}^c\) 的前提下，(3.23) 成立当且仅当 \(a\) 为复子代数。

事实上，由式(3.22) 及 \(g^c = a + \overline{a}\)，今取 \(X, Y \in a\)，则 (3.22)
化为 \(J^c[X, Y] = \sqrt{-1}[X, Y], \quad (\text{mod } \mathfrak{h}^c)\)。这证明了 \(x^c[X, Y] \in (\mathfrak{g}/\mathfrak{h})^+\)，所以 \([X, Y] \in a\)。即 \([a, a] \subset a\)，或 \(a\) 为复子代数。

注意当 \(a\) 是子代数时，由于 \(\mathfrak{h}^c \subset a\)，所以 \([\mathfrak{h}^c, a] \subset a\) 只是一个推论。至此证明了定理。

定理 3.4 旁集空间 \(G/H\) 有 \(G\) 不变复结构当且仅当 \(g^c\) 有复子代数 \(a\)，使 \(g^c = g + a\)，\(g \cap a = \mathfrak{h}\)。

证 由定理 3.3。已知 \(G/H\) 有 \(G\) 不变复结构当且仅当 \(g^c\) 有复子代数 \(a\)，使得

\[g^c = a + \overline{a}, \quad a \cap \overline{a} = \mathfrak{h}^c.\]

下面证明，这条件等价于
\[g^c = g + a, \quad g \cap a = \mathfrak{h}\].

先证 \(g^c = a + \overline{a}\) 当且仅当 \(g^c = g + a\)。首先设 \(g^c = a + \overline{a}\)，\(a \cap \overline{a} = \mathfrak{h}^c\)。于是任取 \(X \in a\)，有 \(X + \overline{X} \in g\)。而 \(\overline{X} = -X + (X + \overline{X}) \in a + g\)，
即 \(\overline{a} \subset a + g\)。所以 \(g^c = a + \overline{a} \subset a + g \subset g^c\)，即 \(g^c = a + g\)。再设 \(g^c = g + a\)。任取 \(X \in g\)，则 \(\sqrt{-1}X \in g\)，即 \(\sqrt{-1}X = Y + Z, Y \in g, Z \in a\)，于是 \(-\sqrt{-1}X = Y + \overline{Z}\)。因此 \(2\sqrt{-1}X = Z - \overline{Z}\)。
所以 \(X = \frac{1}{2\sqrt{-1}}Z - \frac{1}{2\sqrt{-1}}\overline{Z} \in a + \overline{a}\)，这证明了 \(g \subset a + \overline{a}\)。因此 \(g^c = g + a \subset a + \overline{a} \subset g^c\)，即 \(g^c = a + \overline{a}\)。

最后证 \(a \cap \overline{a} = \mathfrak{h}^c\) 当且仅当 \(g \cap u = \mathfrak{h}\)。事实上
\[\dim_\mathbb{R} g^c = 2\dim_\mathbb{R} \overline{a} - \dim_\mathbb{R} (a \cap \overline{a})
= \dim g + \dim_\mathbb{R} a - \dim g \cap a.
\]
由于 \(\dim_\mathbb{R} g^c = 2\dim g\)。
所以证明了 \(\dim g = \dim_\mathbb{R} a - \dim g \cap a\)。
代入，有 \(\dim_\mathbb{R} (a \cap \overline{a}) = 2\dim g \cap a\).
今若 \(a \cap \bar{a} = \bar{\mathfrak{g}} \), 所以 \(\mathfrak{g} \subseteq a \). 因此 \(a \cap \mathfrak{g} \cap a \). 但 \(2 \dim \mathfrak{g} = 2 \dim a \cap a \). 所以 \(\mathfrak{g} = a \cap \mathfrak{g} \). 反之，若 \(a \cap \mathfrak{g} = \mathfrak{g} \), 则 \(a \cap \bar{a} = \mathfrak{g} \). 因此 \(\bar{\mathfrak{g}} \subseteq a \cap \bar{a} \). 由 \(\dim \mathfrak{g} = 2 \dim \mathfrak{g} = \dim \bar{\mathfrak{g}} \), 所以证明了 \(a \cap \bar{a} = \bar{\mathfrak{g}} \). 定理证明完。

§ 4 对称 Hermite 空间

定义 设 \((M, g)\) 为 Hermite 流形。对点 \(x \in M \), \(M \) 到自身上的全纯同构 \(\sigma_x \) 若为等度量同构，且 \(\sigma_x^2 = id_M \), 又 \(x \) 是 \(\sigma_x \) 的孤立不动点。则 \(\sigma_x \) 称为 \((M, g)\) 的关于点 \(x \) 的对称。

定义 对 Hermite 流形 \((M, g)\) 的每点 \(x \in M \), 都有关于点 \(x \) 的对称 \(\sigma_x \) 存在，则 \((M, g)\) 称为对称 Hermite 空间。

这时，\((M, g)\) 作为 Riemann 流形，显然它是对称 Riemann 空间。所以关于对称 Riemann 空间的各种概念，如半单型、不可约等等，对对称 Hermite 空间也可以自然地引进。

定义 设 \(G/H \) 为 Riemann 对称旁集空间，具有 \(G \) 不变复结构 \(I \) 及 \(G \) 不变 Hermite 度量 \(g \)。则 \((G/K, I, g)\) 称为 Hermite 对称旁集空间。

由下面定理可知，对称 Hermite 空间和 Hermite 对称旁集空间这两个概念本质上是相同的。

定理 4.1 连通 Lie 群 \(G \) 的 Hermite 对称旁集空间 \((G/K, I, g)\) 是一个连通对称 Hermite 空间。反之，连通对称 Hermite 空间 \((M, g)\) 是等度量地全纯同构于一个 Hermite 对称旁集空间 \((G/K, I, g)\)，其中 \(G \) 为连通 Lie 群，且在 \(G/K \) 上作用有效，又 \(G \) 必须等度量同构于 \((M, g)\) 的自同构群的单位分量。

证 (比较第二章定理 2.1) 先证 Hermite 对称旁集空间 \((G/K, I, g)\) 为对称 Hermite 空间。事实上，任取一点 \(x \in G/K \)，只要证 \(G/K \) 作为 Riemann 对称旁集空间，关于 \(x \) 的对称 \(\sigma_x \) 在 \(G/K \) 上是全纯映射就够了。今 \(\pi: G \to G/K \) 是自然映射，取 \(0 = \pi(e) \)，\(x = \pi(a) \)。则关于 \(x \) 点的对称 \(\sigma_x = \tau_a \circ \sigma_0 \circ \tau_a^{-1} \)。由于 \(\tau_a \)
为全纯同构，所以问题化为证 σ_0 全纯。

今知 $(d\sigma_0)_0 = -i\mathbf{id}$ 在 $T_0(G/K)$ 上成立，所以在 $T_0(G/K)$ 上，$(d\sigma_0)_0$ 和 I_0 可交换，即 $d\sigma_0 \circ I = (d\sigma_0)^{-1} \circ I$ 在 G/K 中点 0 上相等。由于 $\sigma_0 \circ \tau_a = \tau_{\sigma(a)} \circ \sigma_0, \forall a \in G$，所以 $d\sigma_0 \circ I = (d\sigma_0)^{-1} \circ I$ 在 G/K 上都是 G 不变的，因此证明了在 G/K 上它们相等，即 $d\sigma_0 \circ I = I \circ d\sigma_0$。这证明了 σ_0 在 G/K 上全纯。

反之，设 (M, g) 为连通对称 Hermite 空间，M 上全纯自同构，且为等度量变换称为 M 上的自同构。M 上所有自同构构成一个群，称为 M 的自同构群，记作 Aut (M, g). 记 $G = \text{Aut} (M, g)^0$. 对 M 中一定点 0，设 G 中 0 点于子群为 K. 由于 M 连通，和对称 Riemann 空间一样的方法可以证明 G 在 M 上作用有效，全纯且可逆。且在 G 上可以引进对合自同构 σ，使 $\sigma(a) = \sigma_0 a \sigma_0^{-1}, \forall a \in G$. 于是 $G_0 \subset K \subset G$. 于是作为对称 Riemann 空间 (M, g) 可以看作是 Riemann 对称旁集空间 G/K. M 的复结构 I 及 Hermite 度量 g 可以转移到 G/K 上，用同样符号记之，则不难证明，这时 $(G/K, I, g)$ 为 Hermite 对称旁集空间，且 M 和 G/K 全纯同构，所以证明了定理。

推论 对称 Hermite 空间 (M, g) 的 Hermite 度量为 Kaehler 度量。

证 将 (M, g) 看作 Hermite 对称旁集空间 $(G/K, I, g)$. 今 g 是 G 不变的，所以它的 Kaehler 形式 Ω 也是 G 不变的 $(2, 0)$ 形式。由第二章定理 1.1 的推论，便证明了 $d\Omega = 0$. 所以 g 为 Kaehler 度量。推论证完。

例 1 复 Euclid 空间 (C^n, g) 是对称 Hermite 空间，对 C^n 中点 z_0 之对称变换 σ_* 为 $z \rightarrow -(z - z_0) + z_0$. 取

$$G = \left\{ \begin{pmatrix} 1 & 0 \\ \beta & \alpha \end{pmatrix} \bigg| \alpha \in U(n), \beta \in C^n \right\},$$

$$K = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix} \bigg| \alpha \in U(n) \right\}.$$

这里 G 中元
\[a = \begin{pmatrix} 1 & 0 \\ \beta & \alpha \end{pmatrix} \]

作用于 \(\mathbb{C}^n \) 中点 \(z \) 上，像为 \(a \cdot z = az + \beta \)。自然 \(\text{Aut}(M, g) \circlearrowleft G, \mathbb{C}^n \) 中原点 \(0 \) 的逆向子群即 \(K \)。所以 \(\mathbb{C}^n = G/K \)。这时，定义对称旁集空间 \(G/K \) 的 \(G \) 的对合自同构 \(\sigma \) 为
\[\sigma \begin{pmatrix} 1 & 0 \\ \beta & \alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\beta & \alpha \end{pmatrix}. \]

例 2 具有 Poincaré 度量的 Poincaré 上半平面
\(H^2 = \{ z \in \mathbb{C} \mid \text{Im} \ z > 0 \} \).
已知 \(\text{Aut}(H^2, g) \cong \text{SL}(2, \mathbb{R}) / \{ \pm I_2 \} \)，其中 \(I_2 \) 为 2 阶单位方阵。于是 \((H^2, g) \) 可表为 Hermite 对称旁集空间
\(\text{(SL}(2, \mathbb{R})/SO(2), I, g) \).

例 3 具有 Fibini-Study 度量 \(g \) 的复射影空间 \(P^n(\mathbb{C}) \)，可证
\(\text{Aut}(P^n(\mathbb{C})) \cong U(n+1) \)。\(P^n(\mathbb{C}) \) 可表为 Hermite 对称旁集空间
\((U(n+1)/U(1) \times U(n), I, g) \)。定义此对称旁集空间的 \(U(n+1) \) 的对合自同构 \(\sigma \) 为
\(\sigma(a) = \sigma_0 a \sigma_0^{-1} \)，其中
\(\sigma_0 = \text{diag}(-1, 1, \cdots, 1) \in U(n+1) \).
于是 \((P^n(\mathbb{C}), g) \) 为对称 Hermite 空间。

设 \(G/H \) 为 Hermite 对称旁集空间，记 \(g = \text{Lie}G, \mathfrak{h} = \text{Lie}H \)，则对 \(G \) 的对合自同构 \(\sigma, \mathfrak{g} \) 有标准分解 \(g = \mathfrak{f} + m \)，使 \(m \cong g/\mathfrak{h} \cong T_0(G/H) \)。对 \(G/H \) 的复结构 \(I \)，于是 \(T_0(G/H) \) 上线性变换 \(I_0 \) 变为 \(m \) 上线性变换，仍用 \(I_0 \) 记之，有
\begin{align}
(4.1) & I_0^2 = -\mathbf{i}d_m, \\
(4.2) & Ad_m(k) I_0 = I_0 Ad_m(k), \quad \forall k \in \mathfrak{f}, \\
(4.3) & J[\mathbf{X}, \mathbf{Y}] - [J\mathbf{X}, \mathbf{Y}] - [\mathbf{X}, J\mathbf{Y}] - J[J\mathbf{X}, J\mathbf{Y}] \in \mathfrak{f}, \\
& \quad \forall \mathbf{X}, \mathbf{Y} \in \mathfrak{g}.
\end{align}
其中 \(J \) 是由 \(I \) 诱导的 Koszul 算子。

定理 4.2 设 \((M, g) \) 为单连通对称 Hermite 空间，则 \((M, g) \) 等度量地全纯同构于直积
\[(M, g) \cong (\mathbb{C}^n, g_0) \times (M_1, g_1), \]

第 92 页
其中 \mathbb{C}^\ast, g_0 为复 Euclid 空间。(M_1, g_1) 为半单型对称 Hermite 空间。

证 类似于第二章定理 5.2. 首先，由此定理推出
\[g = g_0 + g_1, \quad g_0 = \mathfrak{g}_0 + \mathfrak{m}_0, \quad g_1 = \mathfrak{g}_1 + \mathfrak{m}_1 \]

且
\[m = m_0 + m_1. \]

我们可以证明，(M, g) 的复结构 I, 有 $I_0(m_0) \subset \mathfrak{m}_0, I_0(m_1) \subset \mathfrak{m}_1$. 事实上，在 m 上的内积 Q 有 $Q(I_0X, I_0Y) = Q(X, Y), \forall X, Y \in m$. 这是因为 Q 由 G/K 的 Hermite 度量 g 所导出，于是只要 $I_0(m_0) \subset \mathfrak{m}_0, I_0(m_1) \subset \mathfrak{m}_1$. 下面证 $I_0(m_0) \subset m_0$. 考虑射影变换 $P_i: m \rightarrow m_i, i = 0, 1$. 作 $P_1(I_0m_0) \subset m_1$, 它在 $ad_m(k)$ 下不变. 事实上，$ad_m(k)$ 与 P_i 可交换, $k \in K$, 故

\[ad_m(X)P_1(I_0m_0) = P_1(ad_m(X)I_0m_0) = P_1I_0(ad_m(X)m_0) = 0, \forall X \in \mathfrak{f}_1. \]

如果 $P_1(I_0m_0) \neq 0$, 那末在 m_1 中有 $ad_m(f_1)$ 不变子空间, 使在其上 $ad_m(f_1) = 0$. 这是不可能的, 因此只有 $P_1(I_0(m_0)) = 0$. 这证明了 $I_0(m_0) \subset m_0$.

今 $I_0(m_i) \subset m_i, i = 0, 1$. 于是在 g_i 上可以定义由 $I_0|m_i$ 诱导的 Koszul 算子 J_i, 使它适合可积条件 (4.3), 其中 $X, Y \in g_i, f_i$ 为 $f_i, i = 0, 1$. 且 $J_i|m_i = J_i, i = 0, 1$, 于是 J_i 在 G_i/K_i 中引进了 G_i 不变复结构, $i = 0, 1$. 这证明了定理.

类似地，如果 $(\mathfrak{g}, \sigma, Q)$ 是 Riemann 对称 Lie 代数, 它定义了半单型 Hermite 对称旁集空间, 则在第二章定理 5.4 给出的分解式中, 每个直接和因子 $(\mathfrak{g}_i, \sigma_i)$ 也对应了 Hermite 对称旁集空间. 所以, 类似于第二章定理 5.5. 我们有

定理 4.3 半单型单连通对称 Hermite 空间 (M, g) 是等度量地全纯同构于一些半单型不可约对称 Hermite 空间的直乘积.

现在证明

定理 4.4 设 (M, g) 为半单型对称 Hermite 空间, 则
\[\text{Aut}(M, g)^0 = I(M, g)^0. \]

证 已知 (M, g) 为半单型对称 Riemann 空间, 由定理

\[.\]
4.1，所以 $M_\mathbb{R}$ 可表示为 Riemann 对称旁集空间 $(G/K, g)$，其中 $G = \text{Aut}(M, g)^0$. 由第二章定理 5.8，必须有 $G = I(M_\mathbb{R}, g)^0$. 这证明了定理。

§ 5 不可约对称 Hermite 空间的分类

类似于第二章，命题 2.1 之 (d)，可以证明连通对称 Hermite 空间 (M, g) 的通用覆盖 (\tilde{M}, \tilde{g}) 也是连通对称 Hermite 空间，其中 \tilde{g} 为 g 之提升。由定理 4.2 及 4.3，单连通对称 Hermite 空间是复 Euclid 空间及一些不可约的半单型的单连通对称 Hermite 空间的直乘积。由此可见，对不可约的半单型的对称 Hermite 空间作分类，是极其重要的。

由定理 4.4 及第二章定理 5.3，不可约的半单型的对称 Hermite 空间 (M, g) 能唯一地表示为 Hermite 对称旁集空间 $(G/K, I, g)$，其中 G 为在 M 上作用有效的连通半单 Lie 群，确切地说，

$$G = \text{Aut}(M, g)^0.$$

首先考虑连通 Hermite 对称旁集空间 $(G/K, I, g)$. 记 (g, σ, Q) 为由 $(G/K, I, g)$ 定义的 Riemann 对称 Lie 代数。$g = \mathfrak{t} + \mathfrak{m}$ 为关于 σ 的标准分解。G/K 上 G 不变复结构 I 定义了 \mathfrak{m} 上的线性自同构 I_0，使得

$$I_0^2 = -\text{id}_\mathfrak{m},$$

$$\text{Ad}_\mathfrak{m}(k) I_0 = I_0 \text{Ad}_\mathfrak{m}(k), \quad \forall k \in K,$$

$$Q(I_0X, I_0Y) = Q(X, Y), \quad X, Y \in \mathfrak{m}.$$

由 (5.2) 可推出

$$\text{ad}_\mathfrak{m}(X) I_0 = I_0 \text{ad}_\mathfrak{m}(X), \quad \forall X \in \mathfrak{t}.$$

且当 K 为连通子群时，(5.2) 和 (5.4) 等价。

定义 适合条件 (5.1), (5.2), (5.3) 的 Riemann 对称 Lie 代数 (g, σ, Q) 称为 Hermite 对称 Lie 代数，记作 (g, σ, Q, I_0). 且如果 (g, σ, Q) 作为一个 Riemann 对称 Lie 代数，它有效，或不可约，或半单型等等，那么相应 (g, σ, Q, I_0) 作为 Hermite 对称 Lie 代数。
也是有效、或不可约、单型等等。

上面讨论告诉我们，从 Hermite 对称旁集空间 \((G/K, I, g) \) 可以定义一个 Hermite 对称 Lie 代数 \((g, \sigma, Q, I_0)\)。反之，给定 Hermite 对称 Lie 代数 \((g, \sigma, Q, I_0)\) 即为 Riemann 对称 Lie 代数，它唯一决定了一个 Riemann 对称旁集空间 \((G/K, g)\)，而 \(I_0\) 及 \(Q\) 分别唯一决定了 \(G/K\) 上一个复结构 \(I\) 及 Hermite 度量 \(g\)，所以 \((G/K, g, I)\) 为 Hermite 对称旁集空间。

引理 5.1 设 \((G/K, I, g)\) 为 Hermite 对称旁集空间，\(G\) 在 \(G/K\) 上作用有效。记 \((g, \sigma, Q, I_0)\) 为由它定义的 Hermite 对称 Lie 代数。由标准分解 \(g = \mathfrak{f} + \mathfrak{m}\) 及 \(I\) 定义的 Koszul 算子 \(J\)。则对 \(g\) 的复化 \(g^\mathbb{C}\)，\(J\) 可扩充为 \(g^\mathbb{C}\) 上算子，记作 \(J^\mathbb{C}\)。记

\[
 n^\pm = \{X \in g^\mathbb{C} | J^\mathbb{C} X = \pm \sqrt{-1} X\}.
\]

则有

\[
 m^\mathbb{C} = n^+ + n^-,
 n^+ \cap n^- = (0),
 n^\mathbb{C} = n^-.
\]

其中 \(-\) 为 \(g^\mathbb{C}\) 中关于 \(g\) 的共轭。又 \(n^\pm\) 都是 \(g^\mathbb{C}\) 的交换子代数。\(J\) 为 \(g\) 的微分。

证　今已知 \(J^\mathbb{C}|\mathfrak{f}^\mathbb{C} = 0, J^\mathbb{C}|m^\mathbb{C} = I_0^\mathbb{C}|m^\mathbb{C}\)。所以(5.5)成立。再由式(5.4)，有 \(ad_m(X)^\mathbb{C}J^\mathbb{C} = J^\mathbb{C}ad_m(X)^\mathbb{C}\)，在 \(m^\mathbb{C}\) 上成立，\(\forall X \in \mathfrak{f}\)。此 \(ad_m(X)^\mathbb{C}\) 为 \(ad_m(X)^\mathbb{C}\) 下不同，于是在 \(n^\pm\) 上诱导了线性变换 \(ad_m^\mathbb{C}(X)\)。\(\forall X \in \mathfrak{f}\)。显然 \(ad_m^\mathbb{C}: X \rightarrow ad_m^\mathbb{C}(X)\) 定义了 \(\mathfrak{f}\) 在 \(n^\mathbb{C}\) 上的表示。下面证这是一一表示。事实上，由于 \(G\) 在 \(G/K\) 上作用有效，所以 \(\mathfrak{f}\) 中无 \(g\) 的非零理想。另一方面，表示 \(ad_m^\mathbb{C}\) 的核为 \(\mathfrak{p}^\pm = \{X \in \mathfrak{f} | ad_m^\mathbb{C}(X) = 0\} = \{X \in \mathfrak{f} | [X, Y] = 0, \forall Y \in n^\pm\}\)。由于

\[
 ad_m^\mathbb{C}(X)Y = ad_m(X)\overline{Y}, \quad \forall X \in \mathfrak{f}, Y \in n^\mathbb{C},
\]

由此可见 \(\mathfrak{p}^+ = \mathfrak{p}^-\)。由(5.5)可知 \(ad_m^\mathbb{C}\) 的核即 \(ad_m\) 的核。显然此核为 \(\mathfrak{f}\) 中 \(g\) 的理想，所以为零。这证明了表示 \(ad_m^\mathbb{C}\) 的核为零，即表示一一。

将表示 \(ad_m^\mathbb{C}: \mathfrak{f} \rightarrow ad_m^\mathbb{C}(\mathfrak{f})\) 扩充为表示 \(ad_m^\mathbb{C}: \mathfrak{f}^\mathbb{C} \rightarrow ad_m^\mathbb{C}(\mathfrak{f}^\mathbb{C})\)。显然表示
空间仍为 n^*. 这是因为任取 $Y, Z \in f$, $X \in n^*$. 则 $[Y, X], [Z, X] \in n^*$. 所以 $[Y + \sqrt{-1} Z, X] \in n^*$. 即 $ad^+_m(Y + \sqrt{-1} Z)$ 以 n^* 为不变子空间. 所以 ad^+_m 为 t^c 之表示, 表示空间为 n^*. 下面证此表示也为一一表示.

由于如果 $Y, Z \in f$, $[Y + \sqrt{-1} Z, n^+] = 0$, 则 $[Y - \sqrt{-1} Z, n^-] = 0$, 所以 ad^+_m 一一可推出 ad^-_m 一一. 今由 m 上内积 Q 可定义 m^c 上内积 (即定正 Hermite 型) Q^c. 从而可定义 n^+ 上函数

$$Q^+(Y, Z) = Q^c(Y, Z) = Q^c(Y, Z), \quad \forall Y, Z \in n^+.$$

它是 n^+ 上内积. 自然, 对 $X \in f$, 有

$$Q^+(ad^+_m(X)Y, Z) + Q^+(Y, ad^+_m(X)Z) = 0, \quad \forall Y, Z \in n^+.$$

于是在 n^+ 中存在关于 Q^+ 的标准正交基, 使 $ad^+_m(X), \forall X \in f$ 都对应斜 Hermite 方阵. 因此任取 $X_1, X_2 \in f$ 则 $X_1 + \sqrt{-1} X_2 \in f$. 且 $ad^+_m(X_1 + \sqrt{-1} X_2) = ad^+_m(X_1) + \sqrt{-1} ad^+_m(X_2) = 0$. 由 $ad^+_m(X_1)$ 斜 Hermite, $\sqrt{-1} ad^+_m(X_2)$ Hermite, 所以有 $ad^+_m(X_1) = 0, ad^+_m(X_2) = 0$. 但 t^c 之表示 ad^+_m 一一, 即有 $X_1 = X_2 = 0$. 这证明了 ad^+_m 在 t^c 之表示之核为零, 即此表示一一. 总之, t^c 上表示 ad^+_m 都一一.

今取 $X, Y \in n^-, Z \in n^+$. 则 $[X, Y] \in t^c$. 而

$$ad^+_m([X, Y])Z = [[X, Y], Z]$$
$$= -[[Z, X], Y] + [[Z, Y], X]$$
$$= ad([Z, Y])X - ad([Z, X])Y \in n^-.$$

故 $ad^+_m([X, Y])Z \in n^+ \cap n^- = 0$. 由于 t^c 上表示 ad^+_m 一一, 所以 $[X, Y] = 0$. 即 $[n^-, n^-] = 0$. 取共轭, 有 $[n^+, n^+] = 0$. 这证明了 n^* 为交换子代数.

最后, 证 J 为 g 上的微分. 即证在 g^c 上有 J^c, 使

$$J^c[X, Y] = [J^cX, Y] + [X, J^cY], \quad \forall X, Y \in g^c.$$

由于 $g^c = t^c + n^+ + n^-$. 取 $X, Y \in f^c$, 等式成立. 取 $X, Y \in n^*$. 由 $[n^+, n^+] = 0, [n^-, n^-] = 0$, 及

$$J^cX = \pm \sqrt{-1} X, J^cY = \pm \sqrt{-1} Y,$$

所以等式也成立. 取 $X \in n^+, Y \in n^-$. 由 $[n^+, n^-] \subset t^c$, $J^c t^c = 0$.

96.
故
\[J^c[X, Y] - [J^cX, Y] - [X, J^cY] = 0 - \sqrt{-1}[X, Y] + \sqrt{-1}[X, Y] = 0. \]
故等式也成立。取 \(X \in \mathfrak{t}, Y \in \mathfrak{n}^\perp \)。由 \([\mathfrak{t}^c, \mathfrak{n}^\perp] \subset \mathfrak{n}^\perp \)，有
\[J^c[X, Y] - [J^cX, Y] - [X, J^cY] = \pm \sqrt{-1}[X, Y] \mp \sqrt{-1}[X, Y] = 0. \]
所以等式对一切 \(X, Y \in \mathfrak{g}^c \) 成立。这也证明了
\[J[X, Y] = [JX, Y] + [X, JY], \quad \forall X, Y \in \mathfrak{g}. \]
即 \(J \) 为 \(\mathfrak{g} \) 上的微分。引理证完。

定理 5.1 设 \((G/K, I, g)\) 为有效半单型 Hermite 对称旁集空间，其中 \(G \) 为连通半单 Lie 群。它定义了 Hermite 对称 Lie 代数 \((\mathfrak{g}, \sigma, Q, I_0)\)。记 \(\mathfrak{g} \) 关于 \(\sigma \) 的标准分解为 \(\mathfrak{g} = \mathfrak{t} + \mathfrak{m} \)。则存在 \(\mathfrak{t} \) 之中心元素 \(Z \neq 0 \)，使得 \(I_0 = ad_m(Z) \)，\(\sigma = \exp \pi ad(Z) \)，

证 记 \(J \) 为由 \(\mathfrak{g} = \mathfrak{t} + \mathfrak{m} \) 及 \(I_0 \) 定义的 Koszul 算子。由引理 5.1，\(J \) 为 \(\mathfrak{g} \) 的微分。由 \(\mathfrak{g} \) 半单，所以 \(\mathfrak{g} \) 的微分都是内微分。即存在 \(Z \in \mathfrak{g} \)，使 \(J = adZ \)。而由于
\[\mathfrak{t} = \{ X \in \mathfrak{g} | JX = 0 \} = \{ X \in \mathfrak{g} | [Z, X] = 0 \} = O(Z), \]
这里 \(O(Z) \) 指 \(Z \) 的中心化子。所以 \(\mathfrak{Z} \in \mathfrak{t} \)。所以 \(ad_mZ \) 有意义。于是 \(I_0 = J | m = ad_mZ \)。

今已知 \(J^2X = -X, \forall X \in \mathfrak{m} \)。于是对任一实数 \(\theta \),
\[
(\exp \theta J)X = \sum_{j=0}^{\infty} \frac{1}{j!} (\theta J)^j X
= \sum_{j=0}^{\infty} \frac{(-1)^j \theta^{2j}}{(2j)!} X + \sum_{j=0}^{\infty} \frac{(-1)^j \theta^{2j+1}}{(2j+1)!} JX
= X \cos \theta + JX \sin \theta.
\]
取 \(\theta = \pi \)，有 \((\exp \pi J)X = -X, \forall X \in \mathfrak{m} \)。显然，\((\exp \pi J)X = X, \forall X \in \mathfrak{t} \)
。这证明了 \(\sigma = \exp \pi J = \exp \pi adZ \)。定理证完。

下面讨论有效半单型不可约对称 Hermite 空间 \((M, g)\)。熟知它在等度量全纯同构下可以唯一地表成有效半单型不可约 Hermite 对称旁集空间 \((G/K, g, I)\)。这个空间在同构意义下唯一决定了一个 Hermite 对称 Lie 代数 \((\mathfrak{g}, \sigma, Q, I_0)\)，其中 \(\mathfrak{g} \) 半单，
α 关于 σ 的标准分解为 α = f + m，即 f 中无 α 的非零理想，又差一个常数 Q 可表为 α 之 Killing 型 B 在 m 上的限制 B_m。由定理 5.1，f 之中心非空，其中存在非零元 Z，使 I_0 = ad_m Z，σ = exp ω ad Z，故 (α，σ，Q，I_0) 可改写为 (α，σ，I_0)。

定理 5.2 设 (M, g) 为有效半单型不可约对称 Hermite 空间，它决定了有效半单型不可约 Hermite 对称 Lie 代数 (α，σ，I_0)，α 关于 σ 的标准分解为 α = f + m，f 之中心 δ 为一维的，且 α 之复化 α^ℂ 为复单 Lie 代数。

反之，设 (α，σ) 为有效不可约 Riemann 对称 Lie 代数，设 α 关于 σ 的标准分解为 α = f + m，使得 f 之中心 δ ≠ 0。则存在一个有效半单型不可约对称 Hermite 空间 (M, g)，使它决定之 Hermite 对称 Lie 代数为 (α，σ，I_0)，其中 I_0 差一个符号唯一决定。

证 先证前一部分。由定理 5.1，dim δ ≥ 1。引进映射 p: m → n^+，定义为

\[p(X) = \frac{1}{2} (X - \sqrt{-1} I_0 X) \quad \forall X \in m. \]

于是 p 为 m 到 (n^+)^n 上的实线性同构。且

\[p(ad_m(X) Y) = ad^+_m(X) p(Y) \quad \forall Y \in m, X \in f. \]

假设 (α，σ，I_0) 不可约，即 ad_m 为 f 之不可约表示。所以 ad^+_m 为 f^ℂ 在 n^+ 上的复不可约表示。由 Sohur 引理，和 \{ad^+_m X | X ∈ f^ℂ\} 可交换的线性变换只有纯量变换。今任取 W ∈ Z^ℂ，则

\[
(ad_m W)(ad_m X)(Y_1 + \sqrt{-1} Y_2)
= [W, [X, Y_1 + \sqrt{-1} Y_2]]
= [X, [W, Y_1 + \sqrt{-1} Y_2]]
= (ad_m X)(ad_m W)(Y_1 + \sqrt{-1} Y_2), \quad Y_1, Y_2 \in m.
\]

所以 ad_m W 为纯量变换。今已知 0 ≠ Z ∈ δ，使 I_0 = ad_m Z。所以存在复数 λ，使 ad_m (W - λ Z) = 0。但 ad_m 为 f^ℂ 之一一表示，故 W = λ Z。这证明了 dim δ = 1。

再证 α 之复化 α^ℂ 为单 Lie 代数。由第二章定理 6.1。如果 α^ℂ 不是单 Lie 代数，则子代数 f 为单 Lie 代数。所以中心为零。这
导出矛盾。

反之，设 $\frak g, \frak o$ 为有效不可约 Riemann 对称 Lie 代数。记 $\frak g$ 关于 $\frak o$ 的标准分解为 $\frak g = \frak o + \frak m$，由条件 $\frak o$ 之中心 $\frak z \neq 0$。今由有效性，$\frak o$ 中无 $\frak g$ 之非零理想，所以 $\frak o$ 的表示 $ad_{\frak o}$ 一一。由不可约性，$ad_{\frak m}$ 为 $\frak o$ 的不可约表示，今 $\{ad_{\frak o}(Z) | Z \in \frak z\}$ 和 $\{ad_{\frak o}X | X \in \frak o\}$ 可交换。对 $\frak m$ 上内积 Q，扩充到 $\frak m^c$ 上为 Hermite 内积 Q^c。在 $\frak m^c$ 中取关于 Q^c 之标准正交基，即在这组基上，$(ad_{\frak o}Z)^c$ 为斜 Hermite 方阵，$\forall Z \in \frak o$。它们两两可交换。故可在酉相似下同时化为对角形，对角元素全是纯虚数，相应 $\frak m^c$ 有根子空间分解

$$\frak m^c = m_0 + \sum_{\lambda \neq 0} (m_\lambda + \bar{m}_\lambda),$$

其中 O 为 $\frak o$ 上零线性函数，λ 为 $\frak o$ 上非零线性函数。而 $m_0 = \bar{m}_0$，又

$$m_0 = \{X \in \frak m^c | [Z, X] = 0, \forall Z \in \frak o\},$$

$$m_\lambda = \{X \in \frak m^c | [Z, X] = \sqrt{-1} \lambda(Z) X, \forall Z \in \frak o\}.$$

由 $\{ad_{\frak o}X | X \in \frak o\}$ 和 $\{ad_{\frak o}Z | Z \in \frak o\}$ 可交换，所以 m_0 及 $m_\lambda + \bar{m}_\lambda$ 为 $ad_{\frak o}\frak o$ 不变子空间。

由于 $\bar{m}_0 = m_0, (m_\lambda + \bar{m}_\lambda) - m_\lambda + \bar{m}_\lambda$，所以 $\frak m$ 中存在子空间 $\frak m_0, \frak m_\lambda$ 使 $\frak m^c = m_0, \frak m^c = m_\lambda + \bar{m}_\lambda$。而且 $\frak m = \frak m_0 + \sum_{\lambda \neq 0} \frak m_\lambda$ 为空间直接和。又 $\frak m_0, \frak m_\lambda$ 都在 $ad_{\frak o}\frak o$ 下不变。但是 $ad_{\frak o}\frak o$ 为 $\frak o$ 的不可约表示，所以 $\frak m = \frak m_\lambda$ 或 $\frak m = \frak m_0$。在后一种情形，$[\frak o, \frak m] = 0$，即 $\frak o$ 为 $\frak o$ 中 $\frak o$ 之理想。由有效性，$\frak z = 0$。矛盾。所以 $\frak m = \frak m_\lambda$。或

$$\frak m^c = m_\lambda + \bar{m}_\lambda.$$

在 $\frak o$ 中取 Z_0，使 $\lambda(Z_0) = 1$。令 $J = ad_{\frak o} Z_0, I_0 = ad_{\frak o} Z_0$。于是 $J(\frak o) = [Z_0, \frak o] = 0, I_0^2 X = -X, \forall X \in \frak m$。事实上，取 $X \in \frak m_\lambda$，则 $[Z_0, [Z_0, X]] = [Z_0, \sqrt{-1} \lambda(Z_0) X] = -\lambda(Z_0)^2 X = -X$，于是对一切 $\frak m^c$ 中元，$(ad_{\frak o} Z_0)^2 X = -X$。特别对 $\frak m$ 中元成立，即 $I_0^2 = -id_{\frak o}$。再取 $X \in \frak o$，则 $ad_{\frak o}(X) ad_{\frak o} Z = ad_{\frak o} Z ad_{\frak o} X$，即 $ad_{\frak o}(X) I_0 = I_0 ad_{\frak o}(X)$. 最后，

$$J[X, Y] - [JX, Y] - [X, JY] - J(JX, JY) = 0, \forall X, Y \in \frak g.$$
事实上，由于 $J = adZ_0$ 为 g 之微分，故有 $J[X, Y] = [JX, Y] + [X, JY]$. 问题化为 证明 $J[JX, JY] = 0, \forall X, Y \in g$. 当 $X, Y \in \mathfrak{f}$，由 $J(t) = 0$，故等式成立。当 $X, Y \in \mathfrak{m}$，则 $JX, JY \in \mathfrak{m}$，$[JX, JY] \in \mathfrak{f}$，故 $J[JX, JY] = 0$. 当 $X \in \mathfrak{m}, Y \in \mathfrak{f}$，则 $J[JX, JY] = 0$. 这证明了断言。

由定理 3.1，设半单 Lie 代数对应了连通单半 Lie 群 G，取 \mathfrak{f} 对应 G 的连通子群 K，由 $(ad_m X)I_0 = I_0 \circ ad_m X, \forall X \in \mathfrak{f}$ 可推出 $(ad_m k)I_0 = I_0 \circ (ad_m k), \forall k \in K$. 此即 I_0 定义了旁集空间 G/K 的 G 不变复结构。

再由 $Q((ad_m Z_0)X, Y) + Q(X, (ad_m Z_0)Y) = 0, \forall X, Y \in \mathfrak{m}$ 可知 $Q(I_0 X, Y) + Q(X, I_0 Y) = 0, \forall X, Y \in \mathfrak{m}$. 此即由 Q，在 G/K 上定义了一个 G 不变 Hermite 度量 g，从而存在一个不可约对称 Hermite 空间 (M, g)，由它定义的 Hermite 对称 Lie 代数为 (g, σ, Q, I_0)。

再利用定理的前一断言，便证明了这时必须有 $\dim \delta = 1$. 于是如果我们在上面另取 δ 中一非零元，则它必为 $aZ_0, a \neq 0$. 于是按上述办法定义 $I_0 = ad_m Z_0, I_0 = ad_m aZ_0 = a(ad_m Z_0) = aI_0$. 但是 $I_0^2 = -id, (I_0)^2 = a^2I_0^2 = -id$. 这证明了 $a = \pm 1$. 这证明了 I_0 除符号外唯一确定。定理 5.2 证完。

推论 在有效不可约 Riemann 对称 Lie 代数类中，紧半单型对偶于非紧半单型。这个对偶给出了有效不可约 Hermite 对称 Lie 代数类中，紧半单型和非紧半单型间的对偶。

证 由定理 5.2，有效不可约 Riemann 对称 Lie 代数是有效不可约 Hermite 对称 Lie 代数的判别条件为 \mathfrak{f} 之中心 $\delta \neq 0$. 这个性质在对偶下不改变。所以推论成立。证完。

定理 5.8 半单型不可约对称 Hermite 空间是单连通的。

证 设 (M, g) 为不可约对称 Hermite 空间，若 M 是非紧型的，由第二章，定理 6.3，M 单连通，若 M 是紧型的，利用下一章的一个一般性定理：“设 G 为连通半单 Lie 群，G/H 为紧复旁集空间，它具有 G 不变 Kaehler 度量，G/H 单连通”，便能证

\textbf{100}.
明此定理。证完。

利用定理 5.2 和 5.3，便可对所有不可约对称 Hermite 空间进行分类。在紧型的情形，我们可以在表 IV（在第二章之末尾）中找出这种 $M=G/K$，使 K 具有非离散中心。对它们作对偶便可给出非紧型的情形。

半单型不可约对称 Hermite 空间在同构下的分类，标准空间在非紧情形共有四大类和两个特殊空间，它们记作 $(I)_{n,n}, (II)_{n,n}, (III)_{n,n}, (IV)_{n,n}, (V), (VI)$。在紧的情形分别为它们的对偶。下面列出表 V。

表 V

<table>
<thead>
<tr>
<th>型</th>
<th>G_n/K 紧</th>
<th>G/K 非紧</th>
<th>dim G/K</th>
<th>dim G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{n,n}$</td>
<td>$SU(n,n) / S(U(n) \times U(n))$</td>
<td>$SU(n,n, \mathbb{C}) / S(U(n) \times U(n))$</td>
<td>mn</td>
<td>$(m+n)^2 - 1$</td>
</tr>
<tr>
<td>II_n</td>
<td>$SO(2n) / U(n)$</td>
<td>$SO(n, \mathbb{H}) / U(n)$</td>
<td>$n(n-1)$</td>
<td>$n(2n-1)$</td>
</tr>
<tr>
<td>III_n</td>
<td>$Sp(n) / U(n)$</td>
<td>$Sp(n, \mathbb{H}) / U(n)$</td>
<td>$n(n+1)$</td>
<td>$n(2n+1)$</td>
</tr>
<tr>
<td>IV_n</td>
<td>$SO(n+2) / SO(n) \times SO(2)$</td>
<td>$SO(2, n, \mathbb{H}) / SO(n) \times SO(2)$</td>
<td>n</td>
<td>$(n+1)(n+2) / 2$</td>
</tr>
<tr>
<td>V</td>
<td>$E_6 / Spin(10) \cdot SO(2)$</td>
<td>$E_6 / Spin(10) \cdot SO(2)$</td>
<td>16</td>
<td>78</td>
</tr>
<tr>
<td>VI</td>
<td>$E_7 / E_6 \cdot SO(2)$</td>
<td>$E_7 / E_6 \cdot SO(2)$</td>
<td>27</td>
<td>133</td>
</tr>
</tbody>
</table>

记 ≃ 为全纯同构，则上表中有

$I_{1,1} \cong II_2 \cong III_1 \cong IV_1, II_3 \cong III_3, IV_3 \cong III_3$,
$IV_4 \cong I_{2,2}, IV_6 \cong II_4$.

下面给出实现。

紧的情形

$I_{n,n}$: $G_{n,n}(\mathbb{C})$，即复 Grassmann 流形。

II_n: 在 \mathbb{C}^{2n} 中取对称双线性形式 S，使 S 恒为零的子空间称为 S 的 \mathbb{C}^{2n} 完全焦点向子空间，则由此子空间中所有 \mathbb{C}^n 维子空间
为代表元构成 $G_{n,n}(\mathbb{C})$ 中的子流形。

III. 在 \mathbb{C}^n 中取斜对称双线性形式 A，使 A 恒为零的子空间称为 A 的 \mathbb{C}^n 完全密向子空间。则由此子空间中所有 \mathbb{C}^n 维子空间代表元构成的 $G_{n,n}(\mathbb{C})$ 中的子流形。

IV. $\{[z_0, z_1, \cdots, z_{n+1}] \in P^{n+1}(\mathbb{C}) \mid z_0^2 + \cdots + z_n^2 - z_{n+1} = 0\}$。

非紧的情形

I. $\{Z \in M_{n,n}(\mathbb{C}) \mid I_n - iZ > 0\}$，
II. $\{Z \in M_{n}(\mathbb{C}) \mid I_n - iZ > 0, \ iZ = -Z\}$，
III. $\{Z \in M_{n}(\mathbb{C}) \mid I_n - iZ > 0, \ iZ = Z\}$，
IV. $\{z = (z_1, \cdots, z_n) \in \mathbb{C}^n \mid \|z\|^2 < \frac{1 + |z|^2}{2} < 1\}$。

V, VI 也能相应实现为 \mathbb{C}^1 及 \mathbb{C}^2 中齐性有界域。因为书写较繁，从略。

下面介绍 Borel 嵌入。

设 (M, g) 是非紧半单型对称 Hermite 空间，(M^*, g^*) 是它的紧型对偶。则存在一个标准内射 $\nu: M \to M^*$，使得 $\nu(M)$ 全纯同构于 M^* 中开集 $\nu(M)$。这个映射称为 M 到 M^* 内的 Borel 嵌入。M^* 中 $\nu(M)$ 的边界分量在 M 上的调和分析中扮演了重要的角色。

在单位圆的情形，这个嵌入是单位圆到 Riemann 球内嵌入。

设 (M, g) 是非紧型，它的 Borel 嵌入即为 \mathbb{C}^n 中具有 Bergman 度量的对称有界域。这个嵌入也称为 (M, g) 的 Harish-Chandra 实现。

反之，对称有界域必为非紧半单型 Hermite 对称空间。另外，(M, g) 也可实现为 \mathbb{C}^n 中 Siegel 域，它是一类无界域。

关于这一章可参考下面文献：

Helgason[8], I. Satake[20]（这本书出版于本书写成之后，此书所引的文献几乎包含了对称 Hermite 空间方面的所有文献），华罗庚[27]以及

M. Lasselle; Les orbites d'un espace hermitian symétrique compact.
Inventiones Math. 52(1979), 199～239.

J. Wolf and A. Koranyi, Generalized Cayley transformations of bounded symmetric domains, Osaka J.Math, 10(1973), 441～475.

第四章 紧齐性复流形

§ 1 复半单 Lie 代数的构造

下面叙述半单 Lie 代数的构造理论．详细的请参考 Humphrey[10]．

定义 设 \mathfrak{g} 为实或复 Lie 代数．\mathfrak{g} 的子代数 \mathfrak{h} 称为 **Cartan 子代数**，如果

1) \mathfrak{h} 是 \mathfrak{g} 的极大幂零子代数,
2) $\mathfrak{N}(\mathfrak{h}) = \mathfrak{h}$, 其中 $\mathfrak{N}(\mathfrak{h})$ 称为 \mathfrak{h} 的正规化子, 定义为
 \[\mathfrak{N}(\mathfrak{h}) = \{ X \in \mathfrak{g} | [X, \mathfrak{h}] \subseteq \mathfrak{h} \}. \]

定义 设 \mathfrak{g} 为实或复 Lie 代数．取 $X \in \mathfrak{g}$, 设 $\text{ad}(X)$ 的特征多项式为
 \[\det(tI - \text{ad}(X)) = t^n + P_{n-1}(X)t^{n-1} + \cdots + P_1(X)t, \]
其中 $n = \dim \mathfrak{g}$, $P_i(X) \neq 0, \forall X \in \mathfrak{g}$. 则 l 称为 Lie 代数 \mathfrak{g} 的秩.

显然, $P_{n-1}(X), \cdots, P_1(X)$ 是 X 的多项式, 确切地说, 在 \mathfrak{g} 中取定一组成基后, 是 X 的坐标的多项式.

定义 设 \mathfrak{g} 为实或复 Lie 代数, 它的秩为 l. 如果 \mathfrak{g} 中元素 X, 使得 $P_l(X) \neq 0$, 则 X 称为正则元素.

显然, \mathfrak{g} 中所有正则元素构成的集合是 \mathfrak{g} (作为 \mathbb{R}^n 或 \mathbb{C}^n) 的开稠密集．又熟知有下面定理:

定理 1.1 设 \mathfrak{g} 为实或复的 n 维 Lie 代数．对每个正则元素 $X \in \mathfrak{g}$, 记
 \[\mathfrak{g}^X = \{ Y \in \mathfrak{g} | \text{ad}(X)^nY = 0 \}, \]
则 \mathfrak{g}^X 为 \mathfrak{g} 的 Cartan 子代数．

定理 1.1 中的 \mathfrak{g}^X 实际上是 \mathfrak{g} 关于 $\text{ad}X$ 的根子空间分解中, 属于特征根零的根子空间．

• 104 •
通常我们称线性空间 \(\mathcal{L}(\text{实或复}) \) 上线性变换 \(A \) 是幂零的，如果存在自然数 \(k \)，使得 \(A^k = 0 \)，其中 0 为零线性变换，称为 \(A \) 为半单的，如果 \(A \) 的极小多项式没有重根。于是在 \(\mathbb{C} \) 上 \(A \) 是可对角化的线性变换。

命题 1.1 设 \(\mathfrak{g} \) 为实或复 Lie 代数。取 \(X \in \mathfrak{g} \)，设 \(adX \) 是半单的，则存在一个 Cartan 子代数 \(\mathfrak{h} \ni X \)。

证 取 \(X \) 的中心化子 \(C(X) = \{Y \in \mathfrak{g} | [X, Y] = 0\} \)。再取 \(\mathfrak{g}_X = (adX)\mathfrak{g} = [X, \mathfrak{g}] \)。由于 \(adX \) 半单，显然 \(\mathfrak{g} \) 可分解为子空间直接和：\(\mathfrak{g} = C(X) \oplus \mathfrak{g}_X \)。定义映射 \(\phi_x : \mathcal{C}(X) \times \mathfrak{g}_X \rightarrow \mathfrak{g} \) 为

\[
\phi_x(Y, Z) = \exp(adZ)(Y + X).
\]

则此映射 \(\phi_x \) 在 \((0, 0)\) 之 Jacobi 映射为

\[
(Y, Z) \rightarrow Y + [Z, X].
\]

由于 \(ad(X) \) 在 \(\mathfrak{g}_X \) 上非退化，所以 \((Y, Z) \rightarrow Y + [Z, X] \) 为双射，即到上且 1，1。因此 \(\phi_x(0, 0) = X \) 是 \(\mathfrak{g} \) 中 \(\phi_x \) 的像集 \(\phi_x(C(X) \times \mathfrak{g}_X) \) 中的内点。由于正则元素集稠密，故存在正则元素

\[
X_1 \in \phi_x(C(X) \times \mathfrak{g}_X).
\]

它可写为

\[
\phi_x(Y_1, Z_1) = \exp(adZ_1)(Y_1 + X) = X_1,
\]

其中 \(Y_1 \in C(X) \), \(Z_1 \in \mathfrak{g}_X \)。由于 \(\exp(adZ_1) \) 为 \(\mathfrak{g} \) 之自同构，所以 \(Y_1 + X = X_2 \) 也是 \(\mathfrak{g} \) 中正则元素。然而，\(Y_1 \in C(X) \), \(X \in \mathcal{C}(X) \)，所以 \(X_2 \in C(X) \)。即 \([X_2, X] = 0\)。故由正则元素 \(X_2 \) 决定之 Cartan 子代数 \(\mathfrak{h} \ni X \)。命题证完。

下面一系列定理是熟知的，

定理 1.2 设 \(\mathfrak{g} \) 为实或复半单 Lie 代数，\(\mathfrak{h} \) 为 \(\mathfrak{g} \) 中子代数，则 \(\mathfrak{h} \) 为 Cartan 子代数当且仅当下面条件成立：

1) \(\mathfrak{h} \) 是 \(\mathfrak{g} \) 的极大交换子代数，

2) \(ad(H) \) 是半单的，\(\forall H \in \mathfrak{h} \)。

定理 1.3 设 \(\mathfrak{g} \) 为紧 Lie 群 \(G \) 的 Lie 代数。则 \(\mathfrak{g} \) 的子代数 \(\mathfrak{h} \) 为 Cartan 子代数当且仅当 \(\mathfrak{h} \) 是 \(\mathfrak{g} \) 的极大交换子代数。且 \(\mathfrak{g} \) 的任一元素，必落在某个 Cartan 子代数中。

定理 1.4 设 \(\mathfrak{g} \) 为复 Lie 代数或 \(\mathfrak{g} \) 为紧 Lie 群的 Lie 代数。则
α 中任两 Cartan 子代数 h₁, h₂ 互相共轭。 (即在 g 的附属群 Ad(g) 中存在 α, 使得 α(h₁) = h₂.)

定理 1.5 (复半单 Lie 代数的构造定理) 设 g 为复半单 Lie 代数, h 为 g 的 Cartan 子代数。记 h* 为 h 的对偶空间 (即 h 上所有线性函数构成的线性空间), 则在 h* 中存在有限集 A, 称为关于 (g, h) 的根系, 它有如下性质:

a) 任取 α ∈ A, 记
 \[g_α = \{ X ∈ g \mid \alpha(H) X = \alpha(H) X, \forall H ∈ h \} \]
 则 gα ≠ (0), 且 g 有如下的空间直接和:
 \[g = h + \sum_{α ∈ A} g_α. \]

b) \(\dim g_α = 1, \forall α ∈ A. \)

c) 记 g 的 Killing 型为 B, 则
 \[B(g_α, g_β) = 0, \forall α + β ≠ 0, α, β ∈ A. \]
 又 B 在 \(g_α × g_α, \forall α ∈ A \) 以及 h × h 上非退化。

d) 在 g_α 中存在非零元素 X_α, \(\forall α ∈ A \), 使得下面关系成立:
 1) \[[X_α, X_β] = H_α, \text{这里 } H_α ∈ h, \text{由下式唯一定义为} \]
 \[α(H) = B(H, H_α), \forall H ∈ h. \]
 2) 如果 \(α + β ≠ 0, α, β ∈ A \). 则
 \[[X_α, X_β] = \begin{cases} N_{α, β} X_α + X_β, & α + β ∈ A, \\ 0, & α + β ∉ A, \end{cases} \]
 其中 \(N_{α, β} \) 必为非零实数。

e) 作由 \(H_α, \forall α ∈ A \) 生成的实线性空间
 \[h_R = \sum_{α ∈ A} \mathbb{R} · H_α. \]
 这里 \(\mathbb{R} · H_α = \{ λH_α | \forall λ ∈ \mathbb{R} \} \) 是一维实线性空间, 以 \(H_α \) 为基元素。
 我们称 h_R 为 h 的实部, 它有性质
 1) h = h_R + \sqrt{-1} h_R, h_R ∩ \sqrt{-1} h_R = (0).
 2) B 在 h_R 上的限制为 h_R 上的一个内积。
 3) 每个 \(α ∈ A \) 限制在 h_R 上是 h_R 上的实线性函数。

由这个构造定理, 我们可以构造复半单 Lie 代数 g 的一个紧
实形式 \mathfrak{g}_u 如下，令
$$
\mathfrak{g}_u = \sqrt{-1} \mathfrak{h}_R + \sum_{a \in \mathcal{A}} \mathcal{R}(X_a + X_{-a}) + \sum_{a \in \mathcal{A}} \mathcal{R}\{\sqrt{-1}(X_a - X_{-a})\}.
$$
此形式通常称为 \mathfrak{g} 的酉限制。

例 1 记
$$
\mathfrak{g} = sl(n + 1, \mathbb{C}) = \{A \in M_{n+1}(\mathbb{C}) \mid T_r A = 0\},
$$
它是 \mathfrak{a}_n 型单 Lie 代数，\mathfrak{g} 的 Cartan 子代数由 \mathfrak{g} 中所有对角方阵构成，即
$$
\mathfrak{h} = \{\text{diag}(\lambda_1, \ldots, \lambda_{n+1}) \mid \sum_{i=1}^{n+1} \lambda_i = 0\},
$$
则
$$
\Delta = \{\lambda_i - \lambda_j \mid 1 \leq i, j \leq n+1, i \neq j\}.
$$
而
$$
X_{\lambda_i - \lambda_j} = E_{ij}, \quad X_{\lambda_j - \lambda_i} = -E_{ij}, \quad i < j,
$$
其中 E_{ij} 为第 i 行，第 j 列元素为 1，其余位置元素为零的 $n+1$ 阶复方阵。

$$
H_{\lambda_i - \lambda_j} = \text{diag}(0, \ldots, 0, \lambda_i^*, 0, \ldots, 0, -1, 0, \ldots, 0),
$$
又
$$
\mathfrak{g}_u = \{X \in M_{n}(\mathbb{C}) \mid tX + X = 0, \quad T_r X = 0\}
$$
$$
= \text{Lie SU}(n+1) = \mathfrak{su}(n+1).
$$

继续用定理 1.5 的符号。由于 \mathfrak{g} 的 Killing 型 B 在 \mathfrak{h} 上非退化，在 \mathfrak{h}^* 中任取 λ，自然存在 $H_{\lambda} \in \mathfrak{h}$，使得
$$
\lambda(H) = B(H_{\lambda}, H), \quad \forall H \in \mathfrak{h}.
$$
于是 $\lambda \rightarrow H_{\lambda}$ 是 \mathfrak{h}^* 到 \mathfrak{h} 上的线性同构。

显然，$\lambda \in \mathfrak{h}^*$ 诱导了 \mathfrak{h}_R 上实线性形式当且仅当 $H_{\lambda} \in \mathfrak{h}_R$，考虑 \mathfrak{h}_R 上所有线性形式构成的线性空间 \mathfrak{h}_R^*. 于是 $\{H_{\lambda} \in \mathfrak{h}_R \mid \lambda \in \mathfrak{h}^*\}$ 与 \mathfrak{h}_R^* 也有自然的线性同构关系。

注意 B 在 \mathfrak{h}_R 上为内积，即为实定正对称双线性函数。于是相应在 \mathfrak{h}_R^* 上定义了一个内积 \langle , \rangle，它可以定义为
$$
\langle \lambda, \mu \rangle = B(H_{\lambda}, H_{\mu}), \quad \forall \lambda, \mu \in \mathfrak{h}_R^*.
$$
这里自然 $H_{\lambda}, H_{\mu} \in \mathfrak{h}_R$。

定理 1.6 符号同上，记 $\mathcal{V} = \mathfrak{h}_R$. 于是根系 Δ 为 \mathcal{V} 的子集，且适合下列条件:
1) V 由 \mathcal{A} 实线性生成．
2) 设 $\alpha \in \mathcal{A}$．若有 $C \in \mathbb{H}$, 使 $C\alpha \in \mathcal{A}$, 则 $C = \pm 1$．
3) 对每个 $\alpha \in \mathcal{A}$, 定义 V 上映射 S_{α}:
 \[S_{\alpha}(\lambda) = \lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha, \quad \forall \lambda \in V. \]
自然 S_{α} 为 V 上线性变换，且 $S_{\alpha}^2 = id_V$, 又 S_{α} 保持内积不变，即为正交变换．不动点集为
 \[\{\lambda \in V | \langle \lambda, \alpha \rangle = 0\}, \]
即为 V 中超平面，S_{α} 称为关于此超平面的反射，又 $S_{\alpha}(\mathcal{A}) = \mathcal{A}$．
4) $\frac{2(\beta, \alpha)}{(\alpha, \alpha)}$ 对一切 $\alpha, \beta \in \mathcal{A}$ 都是整数．

定义 设 V 为有限维实线性空间，具有内积 $\langle , , \rangle$. V 中有限集 \mathcal{A} 如果适合定理 1.6 的条件 1)～4), 则 \mathcal{A} 称为根系．

设 \mathcal{A} 为根系．则由 \mathcal{A} 定义的反射 $\{S_{\alpha} | \alpha \in \mathcal{A}\}$ 生成了一个由 V 上正交变换构成的有限群 W, 称为此根系的 Weyl 群．

已知对复 Lie 代数 \mathfrak{g} 及其 Cartan 子代数 \mathfrak{h}, 由 $(\mathfrak{g}, \mathfrak{h})$ 决定的根系 \mathcal{A} 是 $V = \mathfrak{h}$ 中的根系．由于 Cartan 子代数的共轭性，所以根系在同构下唯一决定，故可称为 \mathfrak{g} 的根系．根系中元素叫根．

下面一些内容，在本书后面经常要用到．

命题 1.2 设 \mathcal{A} 为 V 中根系，取定 $\alpha, \beta \in \mathcal{A}$．设
 \[\beta - r\alpha, \beta - (r-1)\alpha, \ldots, \beta - \alpha, \beta, \beta + \alpha, \ldots, \beta + (s-1)\alpha, \beta + s\alpha \]
都是根，而 $\beta -(r+1)\alpha, \beta + (s+1)\alpha$ 都不是根，则它称为根链．
这时有
 \[r - s = \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}. \]

定义 设 \mathcal{A} 为 V 中根系，\mathcal{A} 中子集 $\pi = \{\alpha_1, \ldots, \alpha_i\}$ 称为素根系，如果 \mathcal{A} 中任一元 α_i，必可表为
 \[\alpha = n_1\alpha_1 + \cdots + n_i\alpha_i, \]
其中 n_1, \ldots, n_i 为整数．且或者 n_1, \ldots, n_i 同为非负整数，或者 n_1, \ldots, n_i 同为非正整数．
在每个根系中必有素根系存在，事实上，在线性空间 V 中引进线性序，即在 V 中取定一组基 e_1, \cdots, e_n。V 中两向量
\[\alpha = a_1e_1 + \cdots + a_ne_n, \quad \beta = b_1e_1 + \cdots + b_ne_n,\]
如果 $\alpha \neq \beta$，则必有自然数 S，使 $a_1 = b_1, \cdots, a_{S-1} = b_{S-1}, a_S \neq b_S$。当 $a_S > b_S$ 时，记作 $\alpha > \beta$，称为 α 大于 β。于是在 V 中引进了序。关于这个序，如果 $\alpha > 0$，则 V 中向量 α 称为正向量。因此根系 Δ 中元素分成正根系 Δ^+ 及负根系 Δ^- 两部分，且有
\[\Delta = \Delta^+ \cup \Delta^-, \quad \Delta^+ \cap \Delta^- = \emptyset.\]
一个正根如果不能分解为两个正根之和，则称为素根。熟知所有素根构成的集合符合定义要求，所以构成素根系。这也证明了素根系的存在。

如果根系 Δ 有两个素根系 π_1, π_2，熟知存在且只存在 Weyl 群 W 中一元素 w，使 $w(\pi_1) = \pi_2$。

定义 设 Δ 为线性空间 V 中根系，对内积 $\langle \cdot, \cdot \rangle$。如果 Δ 分解为两个不相交非空子集 Δ_1, Δ_2 之并，即
\[\Delta = \Delta_1 \cup \Delta_2, \quad \Delta_1 \cap \Delta_2 = \emptyset, \quad \Delta_1, \Delta_2
eq \emptyset.\]
且 $\langle \Delta_1, \Delta_2 \rangle = 0$，即 Δ_1 和 Δ_2 关于 $\langle \cdot, \cdot \rangle$ 互相正交，则称 Δ 为可分解的。否则称为不可分解的。

熟知复半单 Lie 代数 \mathfrak{g} 有 Cartan 子代数 \mathfrak{h}，关于 $(\mathfrak{g}, \mathfrak{h})$ 有根系 Δ。则 \mathfrak{g} 单当且仅当 \mathfrak{g} 的根系不可分解。

复半单 Lie 代数的分类化为不可分解的根系的分类，从而化为不可分解的素根系的分类。

首先，证明任取两根 α, β，则 $\langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = 0$，1, 2, 3 之一。对素根系 π，可以定义 Coxeter 图如下：记 $\pi = \{\alpha_1, \cdots, \alpha_i\}$。在纸上标 l 个点，分别用 $\alpha_1, \cdots, \alpha_i$ 记之。如果 $\langle \alpha_i, \alpha_j \rangle = \langle \alpha_j, \alpha_i \rangle = 0$，则第 i 个点和第 j 个点不联线；如果 $\langle \alpha_i, \alpha_j \rangle = \langle \alpha_j, \alpha_i \rangle \neq 0$，则第 i 个点和第 j 个点联线。当 $\langle \alpha_i, \alpha_i \rangle = p$，则联 p 条线。自然 p 取 1, 2, 3 之一。这样得到的图叫 π 的 Coxeter 图。如果在 Coxeter 图上按某种规律加上箭头，则称为 π 的 Dynkin 图。

因此复半单 Lie 代数的分类，用 Dynkin 图表示，则有表 VI.
下面叙述复半单 Lie 代数的表示论。
记 \(g \) 为复半单 Lie 代数，\(\mathfrak{h} \) 为 \(g \) 的 Cartan 子代数。\(V \) 为有限维复线性空间，\(gl(V) \) 为 \(V \) 上所有线性变换构成的 Lie 代数。

定义 设 \(\rho: g \rightarrow gl(V) \) 为 \(g \) 的一个表示，表示空间为 \(V \)。如果存在 \(v \in V, v \neq 0 \)，使得

\[
\rho(H)v = \lambda(H)v, \quad \forall H \in \mathfrak{h},
\]

其中 \(\lambda \in \mathfrak{h}^* \)。则 \(\lambda \) 称为表示 \(\rho \) 的权。属于权 \(\lambda \) 的根子空间为

\[
V_\lambda = \{ v \in V | \rho(H)v = \lambda(H)v, \forall H \in \mathfrak{h} \},
\]

它称为属于权 \(\lambda \) 的权空间。
由此定义可知，\(g \) 的根即 \(g \) 的附属表示 \(\text{ad} \) 下的权.

命题 1.3 \(g \) 的表示 \(\rho \) 的权 \(\lambda \) 在 \(\mathfrak{h} \) 的实部 \(\mathfrak{h}^\mathbb{R} \) 上是实值线性函数，即属于 \(\mathfrak{h}^\mathbb{R} \). 所以 \(\lambda \) 可看作是 \(\mathfrak{h}^\mathbb{R} \) 中的元素.

在复半单 Lie 代数 \(g \) 中取定关于 \((g, \mathfrak{h}) \) 的素根系
\[
\pi = \{\alpha_1, \ldots, \alpha_l\}.
\]

定义 \(g \) 的表示 \(\rho \) 的权 \(\lambda \) 称为最高权，如果 \(\lambda + \alpha_i, i = 1, 2, \ldots, l \) 都不是 \(\rho \) 的权，权 \(-\lambda \) 称为最低权，如果 \(\lambda - \alpha_i, i = 1, 2, \ldots, l \) 都不是 \(\rho \) 的权.

定义 \(\mathfrak{h}^\mathbb{R} \) 中元素 \(\lambda \) 称为整形式，如果
\[
\frac{2\langle \lambda, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle} \in \mathbb{Z}, \quad i = 1, 2, \ldots, l,
\]
其中 \(\mathbb{Z} \) 记整数环.

如果 \(\frac{2\langle \lambda, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle}, \quad i = 1, 2, \ldots, l \) 都是非整数，则 \(\lambda \) 称为强整形式.

定理 1.7（最高权定理） 记 \(g \) 为复半单 Lie 代数，而 \(\mathfrak{h}, \Delta, \pi \) 如前，则有

a）不可约表示 \(\rho: g \rightarrow \mathfrak{gl}(V) \) 有唯一的最高权，它的权空间是一维的.

b）\(g \) 的两个不可约表示等价当且仅当它们有相同的最高权.

c）\(\mathfrak{h}^\mathbb{R} \) 中元素 \(\lambda \) 能作为 \(g \) 的不可约表示的最高权的必要且充分条件为 \(\lambda \) 是整形式.

d）设 \(\rho: g \rightarrow \mathfrak{gl}(V) \) 为 \(g \) 的一个表示，设表示 \(\rho \) 有最高权 \(\lambda \in \mathfrak{h}^\mathbb{R} \)，记 \(v \neq 0 \) 为 \(V \) 中属于权 \(\lambda \) 的权向量，则表示 \(\rho \) 不可约当且仅当 \(V = \{\text{ad}(X)v | X \in g\} \).

例 2 对例 1 给出的 Lie 代数 \(g = \mathfrak{sl}(n+1, \mathbb{C}) \)．已知
\[
\mathfrak{h} = \left\{ \text{diag}(\lambda_1, \ldots, \lambda_{n+1}) \mid \sum_{i=1}^{n+1} \lambda_i = 0 \right\},
\]
\[
\Delta = \{\lambda_i - \lambda_j | i \neq j, 1 \leq i, j \leq n+1\}.
\]
可取 \(\pi = \{\lambda_1 - \lambda_2, \ldots, \lambda_n - \lambda_{n+1}\} \). 于是 \(\mathfrak{h}^\mathbb{R} \) 中强整形式形如
\[
m_1\lambda_1 + \cdots + m_{n+1}\lambda_{n+1},
\]
其中 m_i 为整数，$m_i \geq m_j$, $1 \leq i \leq n+1$.

当 $m_{n+1} = 0$ 时，m_1, \cdots, m_n 是唯一确定的。

注意，对 \mathfrak{g} 的不可约表示，也可以用“最低权”来代替“最高权”进行参数化。事实上，\mathfrak{g} 的不可约表示的这两类权，存在 Weyl 群中一个唯一的元素 ω, 使得 $\omega(\pi) = -\pi$, 它将其中一类权变为另一类权。

§ 2 抛物子群

在这一节引进 Borel 子群和抛物子群。它们在紧齐性复流形的研究中扮演了重要的角色。

定义 设 G 为连通复 Lie 群，\mathfrak{g} 为 G 的 Lie 代数。G 的极大可解子群，称为 Borel 子群。相应 \mathfrak{g} 的极大可解子代数，称为 Borel 代数。

由下面定理可知，Borel 子群必为 G 的连通复 Lie 子群。所以在 G 的连通子群和 \mathfrak{g} 的子代数间的一一对应下，Borel 子群一一对应于 Borel 代数。

为了证明 Borel 子群的共轭性，先证明

引理 2.1 从 $GL(n+1, \mathbb{C})$ 在 \mathbb{C}^{n+1} 上的作用，诱导了 $GL(n+1, \mathbb{C})$ 在射影空间 $P^n(\mathbb{C})$ 上的作用。如果 G 为 $GL(n+1, \mathbb{C})$ 中的连可分 Lie 群，且将 $P^n(\mathbb{C})$ 中的偏复子流形 M 映为自身，即 $G(M) = M$。则在 M 中存在一点 a，使它在 G 中所有元素作用下不动。

证 记 G 的 Lie 代数为 \mathfrak{g}，\mathfrak{g} 的复化为 $\mathfrak{g}^\mathbb{C}$，复 Lie 代数 $\mathfrak{g}^\mathbb{C}$ 对应了 $GL(n+1, \mathbb{C})$ 中连通复 Lie 子群，记作 $G_\mathbb{C}$。自然，$G_\mathbb{C}$ 为可解。

现在这个证明是不完全的。这是因为 $M \cap T_1$ 中可能有奇点。详细证明要用到代数几何若干知识。可见 A. Borel, Linear algebraic groups, Benjamin, 1969.
Lie 群。由 Lie 定理，在 \mathbb{C}^{n+1} 中存在一组基，在此基下 $G_\mathbb{C}$ 中元都表成上三角方阵。由这推出在 $P^n(\mathbb{C})$ 中存在子空间序列
$$T_0 \subset T_1 \subset \cdots \subset T_{n-1},$$
使得 $\dim T_i = i$, 且 G 在 T_i 上作用，仍映为 T_i, $i = 0, 1, \ldots, n-1$。
由于 M 为 $P^n(\mathbb{C})$ 的紧子流形，所以是 $P^n(\mathbb{C})$ 中代数子簇。因此存在一个子空间 T_i，使 $T_i \cap M$ 中至少包含一个孤立点 x_0。

由于 $G \subset G_\mathbb{C}$ 连通，且将 $M \cap T_i$ 映为自身。这推出 $a(x_0) = x_0$, $\forall a \in G_\mathbb{C}$。引理证完。

定理 2.1 设 G 为连通复 Lie 群，\mathfrak{g} 为 G 的 Lie 代数，则有

a) G 的 Borel 子群 B 是 G 的连通闭复 Lie 子群。

b) $N(B) = B_0$, 其中 $N(B)$ 为 B 在 G 中的正规化子。

c) G 的两个 Borel 子群是互相共轭的。

证 首先证 Borel 子群 B 是 G 的闭复子群。今对复 Lie 群 G，则 $G_\mathbb{R}$ 为实 Lie 群，Borel 子群 B 是实 Lie 群 $G_\mathbb{R}$ 的极大可解子群。显然 $(\overline{B})^{(k)} \subset B^{(k)}$, 其中“$-$”表示集合的闭包，$B^{(1)} = B, B^{(k)} = (B^{(k-1)}, B^{(k-1)})$ 为 $B^{(k-1)}$ 的换位子群，而 B 可解，所以证明了 \overline{B} 可解。但 B 极大，即 $\overline{B} = B_0$。所以 Borel 子群 B 为 $G_\mathbb{R}$ 的闭子群，因此为实 Lie 群。它对应 Lie 代数 \mathfrak{b} 为 $\mathfrak{g}_\mathbb{R}$ 的实极大可解子代数。自然 $(\mathfrak{b}^\mathbb{C})_\mathbb{R}$ 也是 $\mathfrak{g}_\mathbb{R}$ 的实可解子代数。这证明了 $\mathfrak{b}^\mathbb{C} = \mathfrak{b}$。即 \mathfrak{b} 为复子代数，所以证明了 Borel 子代数 B 为闭复子 Lie 群。

再证 B 连通。记 $N(B) = B_0$。记 B^0 为 B 的单位分量。问题化为证 $B^0 = B$, $N(B^0) = B_0^0$. 显然，$N(B^0) \supset B \supset B^0$. 故只要证 $N(B^0) = B^0$ 即可。

记 R 为 G 的根基，它是 Lie 代数 \mathfrak{g} 的根基 r 所对应的连通 Lie 子群。显然 R 为 G 的闭正规子群，且 $R \subset B^0$. 于是商群 $B / R \subset G / R$. 若能证 B / R 的单位分量 $(B / R)^0 = B^0 / R$ 有 $N((B / R)^0) = (B / R)^0$, 其中 $N((B / R)^0)$ 是 $(B / R)^0$ 在 G / R 中的正规化子，自然 $N(B^0 / R) = B^0 / R$. 于是 $N(B^0) = B^0$. 由于 Lie 群 G / R 半单，因此问题化为 G 是半单的情形。

今 G 为复半单 Lie 群，\mathfrak{g} 为复半单 Lie 代数，\mathfrak{h} 为其 Cartan
子代数 \mathfrak{a} 关于 \mathfrak{h} 分解为根子空间直接和

\[(2.1) \quad \mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in \Delta} \mathfrak{g}_\alpha.\]

其中 Δ 为关于 $(\mathfrak{g}, \mathfrak{h})$ 的根系，\mathfrak{h}_α 中引进正方向，于是 Δ 分解为正根集 Δ^+ 及负根集 Δ^- 之并，在 Δ^+ 中取定素根系 π. 令

\[(2.2) \quad \mathfrak{b} = \mathfrak{h} + \sum_{\alpha \in \Delta^+} \mathfrak{g}_\alpha,\]

显然 \mathfrak{b} 为可解 Lie 代数，且极大，即为 Borel 子代数.

设 $\mathfrak{e})$ 已经证明了。于是在共轭意义下，我们可以无妨取 Borel 子群 B，使其 Lie 代数即 \mathfrak{b}.

今任取 $a \in N(B^0)$，于是 $ad(a)$ 诱导了 B^0 的自同构。所以它的微分（仍用 $ad(a)$ 表示）给出了 Lie 代数 \mathfrak{b} 的自同构，而 \mathfrak{h} 及 $ad(a)\mathfrak{h}$ 都是 \mathfrak{b} 的 Cartan 子代数。由定理 1.4，于是存在 $b \in B^0$，使 $ad(b)\mathfrak{h} = ad(a)\mathfrak{h}$，即 $ad(b^{-1}a)\mathfrak{h} = \mathfrak{h}$. 显然，$ad(b^{-1}a)\mathfrak{b} = \mathfrak{b}$。所以作为 \mathfrak{g} 的内自同构，$ad(b^{-1}a)$ 将 Cartan 子代数 \mathfrak{h} 映为自身，将正根映为正根。所以在 \mathfrak{g} 的 Weyl 群 W 中存在一个元素 w，它是 \mathfrak{h} 上的线性变换，且等于 $ad(b^{-1}a)$ 在 \mathfrak{h} 上的限制。由于 w 将正根映为自身，所以 $w = id_\mathfrak{h}$。这证明了 $ad(b^{-1}a)|_\mathfrak{h} = id_\mathfrak{h}$.

在 G 中取对应于代数 \mathfrak{h} 的连通 Lie 子群 T，这证明了 $b^{-1}a \in \mathcal{O}(T)$，即 T 的中心化子。今由于 T 为 Cartan 子代数 \mathfrak{h} 对应的连通 Lie 群，即为 Cartan 子群。于是 T 的中心化子 $\mathcal{O}(T) = T$。这证明了 $b^{-1}a \in T \subset B^0$。所以由 $b \in B^0$ 有 $a \in B^0$. 这证明了

$N(B^0) = B^0$.

现在来证明 \mathfrak{e})。无妨设 Borel 子群 B 对应了 Lie 代数 \mathfrak{b}，它由式 (2.2) 定义。记 dim $\mathfrak{b} = r$.

\mathfrak{g} 中所有 τ 维复子空间构成集合 $Gr(\mathfrak{g}, \tau)$，自然 \mathfrak{b} 是 $Gr(\mathfrak{g}, \tau)$ 中一个元，素。在 $Gr(\mathfrak{g}, \tau)$ 中自然地引进拓扑，可使 $Gr(\mathfrak{g}, \tau)$ 为紧复流形，它就是复 Grassman 流形。另一方面，考虑关于复线性空间 \mathfrak{g} 的 τ 次外形式构成的线性空间 $\Lambda^\tau \mathfrak{g}$。这个空间中的一维复子空间作为元，自然地构成一个射影空间 $P^\tau(\mathbb{C})$。下面建立 $Gr(\mathfrak{g}, \tau)$ 到 $P^\tau(\mathbb{C})$ 内的全纯嵌入映射如下：对 $Gr(\mathfrak{g}, \tau)$ 中任一元
素，作为 \mathfrak{g} 之 τ 维复子空间，在其中取定一组基。这组基的 τ 次外积是 \mathfrak{g} 中元素，过这元素的复直线 (即一维复子空间) 为 $P^\tau(\mathbb{C})$ 中元素。用这样的办法建立了从 $Gr(\mathfrak{g}, \tau)$ 到 $P^\tau(\mathbb{C})$ 内的一一对应。易证这是全纯同构。

今对 G 中元 a, ad^*a 的微分为 \mathfrak{g} 的内自同构，所以诱导了 $Gr(\mathfrak{g}, \tau)$ 上的全纯自同构。在这意义下，我们称 G 附属地作用于 $Gr(\mathfrak{g}, \tau)$：前面已经证明了，如果 $a \in G$, 使 $ad(a)b = b$, 则 $a \in B$, 所以 $a \rightarrow ad(a)b$ 给出了 G/B 到 $Gr(\mathfrak{g}, \tau)$ 内的双全纯内射。在下一章定理 3.1 中将证明 G/B 为紧复流形，所以全纯嵌入 $Gr(\mathfrak{g}, \tau)$ 后，为 $Gr(\mathfrak{g}, \tau)$ 的紧复子流形。而 $Gr(\mathfrak{g}, \tau)$ 全纯嵌入 $P^\tau(\mathbb{C})$ 中为紧复子流形。所以 G/B 全纯嵌入 $P^\tau(\mathbb{C})$ 中为紧复子流形 m。今 G 全纯地作用于 G/B，导出 G 附属地作用于 $Gr(\mathfrak{g}, \tau)$，从而诱导了 G 射影线性地作用于 $P^\tau(\mathbb{C})$。这也给出了 G 到 $P^\tau(\mathbb{C})$ 上射影变换群内的一个同构。这个同构将 m 变到自身。

设复 Lie 群另有一个 Borel 子群 B', 它作用于 $G/B \cong m$. 应有引理 2.1, 我们得到 G/B 中一点 aB, 它在 $B' B$ 下不动。即 $b a b = a b, \forall b \in B'$. 或 $B' \subset a B a^{-1}$. 但 B' 为极大可解子群，而 $a B a^{-1}$ 也是可解子群，所以证明了 $B' = a B a^{-1}$, 这证明了定理 2.1.

注意关于 Borel 子群共结构性的 Lie 代数证明，请见 Humphrey[10].

定义设 G 为连通复 Lie 群，\mathfrak{g} 为 G 的 Lie 代数，G 的复 Lie 子群 P 如果包含了 G 的一个 Borel 子群，则称为抛物子群。\mathfrak{g} 的复 Lie 子代数 \mathfrak{p} 如果包含了 \mathfrak{g} 的一个 Borel 子代数，则称为抛物子代数。

在下面，我们将证出抛物子群必连通。所以在 Lie 群的连通子群和它的 Lie 代数的 Lie 子代数间的一一对应下，抛物子群和抛物子代数间也有一一对应。

定理 2.2 连通复 Lie 群 G 的抛物子群 P 是闭的连通复 Lie 子群，且 $P = N(P)$，其中 $N(P)$ 为 P 的正规化子。

证 记 P^0 为抛物子群 P 的单位分量。如果证明了 $N(P^0) = \cdot 115 \cdot$
\(P^0 \). 则由于 \(N(P^0) \supset P \supset P^0 \) 可知 \(P = P^0 \), 即 \(P \) 连通. 又由于 \(N(P^0) \) 为 \(G \) 中闭子集, 而 \(P = N(P^0) \), 所以 \(P \) 为闭子群. 自然,
这时 \(P = N(P) \).

下面证 \(P^0 = N(P^0) \). 今任取 \(a \in N(P^0) \). 由于已知 \(G \) 的 Borel 子群连通, 而 \(P \) 中有 \(G \) 的 Borel 子群, 记作 \(B \), 则有 \(P^0 \supset B \). 任取 \(a \in N(P^0) \), 自然 \(aB^{-1} \subset P^0 \), 而且 \(aB^{-1} \) 为 \(G \) 的 Borel 子群. 由 Borel 子群的定义可知 \(B \) 及 \(aB^{-1} \) 也都是连通复 Lie 群 \(P^0 \) 的 Borel 子群. 用定理 2.1 的 (b) 及 (c), 存在 \(b \in P^0 \), 使得 \(B = bB^{-1} \). 这证明了 \(b \in N(B) = B \), 所以 \(a = b^{-1}B \subset P^0 \). 这证明了 \(N(P^0) = P^0 \). 定理证完.

设 \(\mathfrak{g} \) 为复半单 Lie 代数, \(\mathfrak{h} \) 为 \(\mathfrak{g} \) 的 Cartan 子代数. 设 \(\mathfrak{g} \) 关于 \(ad \mathfrak{h} \) 分解为根子空间直接和

\[\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}, \]

其中 \(\Delta \) 为关于 \((\mathfrak{g}, \mathfrak{h})\) 的根系. 记 \(\Delta^+ \) 为正根系, \(\Delta^- \) 为负根系, \(\pi \) 为素根系, 则有 Borel 子代数

\[\mathfrak{b} = \mathfrak{h} + \sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha}, \]

定理 2.8 符号同上, 则包含 Borel 子代数 \(\mathfrak{b} \) 的抛物子代数 \(\mathfrak{p} \) 必形如

\[\mathfrak{p} = \mathfrak{h} + \sum_{\alpha \in \Delta \cup \{\pi_0\}} \mathfrak{g}_{\alpha}, \]

其中 \(\pi_0 \) 为 \(\pi \) 的一个子集, \([\pi_0]\) 为由 \(\pi_0 \) 中素根生成的根. 而且

\[\pi_0 = \{\alpha \in \pi \mid \mathfrak{g}_- \subset \mathfrak{p}\}. \]

而且, 包含 Borel 子代数 \(\mathfrak{b} \) 的抛物子代数和素根系 \(\pi \) 的子集 \(\pi_0 \) 间有如上的一一对应关系.

证 设抛物子代数 \(\mathfrak{p} \supset \mathfrak{b} \). 由于 \(\mathfrak{b} \supset \mathfrak{h} \), 所以 \(\mathfrak{p} \supset \mathfrak{h} \). 故 \(\mathfrak{p} \) 可按 \(ad \mathfrak{h} \) 作根子空间分解, 即存在 \(\Delta^- \) 中子集 \(\Delta^- \), 使得

\[\mathfrak{p} = \mathfrak{h} + \sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha} + \sum_{\alpha \in \Delta^-} \mathfrak{g}_{\alpha}. \]

记

\[\pi_0 = \{\alpha \in \pi \mid -\alpha \in \Delta^-\}, \]

只要证明 \([\pi_0]^- = \Delta^- \) 就行了. 这里 \([\pi_0]^- = [\pi_0] \cap \Delta^- \),

\[\cdot118\cdot \]
为方便起见，记 $\pi_0 = \{\alpha_1, \ldots, \alpha_s\}$, $\pi = \{\alpha_1, \ldots, \alpha_i\}$. 任取 $\beta \in [\pi_0]^-$, 则

$$
\beta = -n_i\alpha_1 - \cdots - n_i\alpha_s,
$$

其中 n_1, \ldots, n_s 为非负整数, 今 $\langle \beta, \beta \rangle = -\sum_{i=1}^{s} n_i \langle \beta, \alpha_i \rangle > 0$, 所以在 $1, 2, \ldots, s$ 中必存在一个指标 i_1, 使 $n_{i_1} > 0$, $\langle \beta, \alpha_{i_1} \rangle < 0$. 由命题 1.2, $\beta + \alpha_{i_1} \in \Delta$, 或者 $\beta + \alpha_{i_1} = 0$. 这个过程依次作下去, 则存在一批指标 i_1, i_2, \ldots, i_k, 使得 $1 \leq i_1, \ldots, i_k \leq s$, 又 β, $\beta + \alpha_{i_1}$, $\beta + \alpha_{i_1} + \alpha_{i_2}$, \ldots, $\beta + \alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_{k-1}} \in \Delta^-$, $\beta + \alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_k} = 0$. 今已知 $-\alpha_{i_1}, \ldots, -\alpha_{i_k} \in \Delta_0^-$, 所以利用 p 为子代数, 由 $\beta + \alpha_{i_1} + \cdots + \alpha_{i_k-1} = -\alpha_{i_k} \in \Delta_0^-$, $-\alpha_{i_k} \in \Delta_0^-$ 及 $\beta + \alpha_{i_1} + \cdots + \alpha_{i_k-1} = (\beta + \alpha_{i_1} + \cdots + \alpha_{i_k-1}) + (-\alpha_{i_k}) \in \Delta^-$ 可知 $\beta + \alpha_{i_1} + \cdots + \alpha_{i_k} \in \Delta_0^-$. 这样依次讨论下去, 便证明了 $\beta = (\beta + \alpha_{i_1}) + (-\alpha_{i_1}) \in \Delta_0^-$. 所以证明了 $[\pi_0]^- \subset \Delta_0^-$. 余下下证 $[\pi_0]^- \supset \Delta_0^-$. 今任取 $\beta \in \Delta_0^-$. 熟知存在 $1 \leq i_1, i_2, \ldots, i_k \leq l$, 使得

$$
\beta, \beta + \alpha_{i_1}, \ldots, \beta + \alpha_{i_1} + \cdots + \alpha_{i_{k-1}} \in \Delta^-,
$$

$$
\beta + \alpha_{i_1} + \cdots + \alpha_{i_k} = 0.
$$

所以只要证明: 设 $\delta \in \Delta_0^-$, $\alpha_i \in \pi_0$ 使得 $\delta + \alpha_i \in \Delta^-$, 则有 $\delta + \alpha_i \in \Delta_0^-$, 从而 $1 \leq i \leq s$. 如果这点证明了, 由 $\beta \in \Delta_0^-$, $\beta + \alpha_i \in \Delta^-$ 可知 $\beta + \alpha_i \in \Delta_0^-$, $1 \leq i \leq s$, 对 $\beta + \alpha_i + \alpha_{i_1} = (\beta + \alpha_i) + \alpha_{i_1}$ 同理讨论, 这样依次作下去, 最后可证 $\beta + \alpha_{i_1} + \cdots + \alpha_{i_k} \in \Delta_0^-$, $1 \leq i_1, \ldots, i_{k-1} \leq s$, 于是 $-\alpha_{i_k} = \beta + \alpha_{i_1} + \cdots + \alpha_{i_k} \in \Delta_0^-$, 即 $1 \leq i_k \leq s$. 所以 $\beta = -\alpha_{i_1} - \cdots - \alpha_{i_k} \in [\pi_0]^-$, 即证明了 $\Delta_0^- \subset [\pi_0]^-$.

今设 $\delta \in \Delta_0^-$, $\delta + \alpha_i \in \Delta^-$. 所以 $-(\delta + \alpha_i) \in \Delta^+, \delta \in \Delta_0^-$. 由于 p 为子代数, 所以只要 $\delta + [- \delta (\delta + \alpha_i)] \in \Delta^-$ 即有 $\delta + [- (\delta + \alpha_i)] \in \Delta^+ \cup \Delta_0^-$, 今 $\delta + [- (\delta + \alpha_i)] = -\alpha_i \in \Delta$, 所以 $-\alpha_i \in \Delta_0^-$, 即 $1 \leq i \leq s$. 因此 $\delta + \alpha_i \in \Delta_0^-$, 这证明了断言. 因此证明了定理.

定理 2.4 设 G 为连通复半群 Lie 群, g 是 G 的 Lie 代数. 符号同定理 2.3. 则 G 的任一抛物子群 P 必共轭于抛物子群 P_{π_0}, 使

$\cdot 117 \cdot$
其 Lie 代数为 \mathfrak{p}_{π}.

$$\mathfrak{p}_{\pi} = \mathfrak{h} + \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha} + \sum_{\alpha \in \Delta \setminus \{\pi\}} \mathfrak{g}_{\alpha}.$$

证 设 P 包含 Borel 子群 B'. 记对应 \mathfrak{g} 的标准 Borel 子代数 \mathfrak{h} 的 Borel 子群为 B. 由定理 2.1 可知存在 $\alpha \in G$, 使 $B = a^{-1}B'a$. 于是 $a^{-1}Pa$ 为包含 Borel 子群 B 的抛物子群. 由定理 2.3, 所以 $a^{-1}Pa$ 的 Lie 代数为 \mathfrak{p}_{π}. 从而证明了 $a^{-1}Pa = P_{\pi}$. 定理证完.

用定理 2.3 的符号, 则记

$$\mathfrak{g}_{\pi} = \mathfrak{h} + \sum_{\alpha \in \{\pi\}} \mathfrak{g}_{\alpha},$$

$$\mathfrak{n} = \sum_{\alpha \in \Delta \setminus \{\pi\}} \mathfrak{g}_{\alpha}.$$

则抛物子代数 \mathfrak{p}_{π} 有如下空间直接和:

$$\mathfrak{p}_{\pi} = \mathfrak{g}_{\pi} + \mathfrak{n}.$$

显然, \mathfrak{n} 为 \mathfrak{p}_{π} 的幂零理想, \mathfrak{g}_{π} 为 \mathfrak{p}_{π} 的子代数, 显然有

命题 2.1 设 G 为复连通半单 Lie 群, \mathfrak{g} 为 G 的 Lie 代数. 则 G 的抛物子群 P_{π} 有连通 Lie 子群 G_{π} 及 N, 其中 G_{π}, N 分别有 Lie 代数 \mathfrak{g}_{π}, \mathfrak{n}. 且 P_{π} 分解为半直乘积 $P_{\pi} = G_{\pi}N$.

为了以后要用, 给出下面引理.

定义 实或复 Lie 代数 \mathfrak{g} 称为么模的, 如果

$$\text{Tr}(adX) = 0, \; \forall X \in \mathfrak{g}.$$

引理 2.2 复 Lie 代数 \mathfrak{g} 的抛物子代数 $\mathfrak{p} \neq \mathfrak{g}$ 不是么模的.

证 设复 Lie 代数 \mathfrak{g} 的根基为 \mathfrak{h}, 则 \mathfrak{g} 有 Levi 分解 $\mathfrak{g} = \mathfrak{h} + \mathfrak{g}_{1}$, 其中 \mathfrak{g}_{1} 为半单子代数. 由于 $\mathfrak{p} \supseteq \mathfrak{h}$, 记 $\mathfrak{p} \cap \mathfrak{g}_{1} = \mathfrak{p}_{1}$, 则有空间直接和 $\mathfrak{p} = \mathfrak{p}_{1} + \mathfrak{h}$. 显然, \mathfrak{p}_{1} 为 \mathfrak{g}_{1} 的抛物子代数. 所以在共轭意义下无妨设 \mathfrak{p}_{1} 为 \mathfrak{p}_{π}. 由于 $\mathfrak{p} \neq \mathfrak{g}$, 所以 $\pi_{0} \subsetneq \pi$. 记 \mathfrak{h}_{1} 为 \mathfrak{g}_{1} 的 Cartan 子代数.

取 $H \in \mathfrak{h}_{1}$, 使 $\alpha_{i}(H) > 0, \; \forall \alpha_{i} \in \pi$. 于是 $\alpha_{i}(H) > 0, \; \forall \alpha \in \Delta^{+}$.

$$\text{Tr}(ad_{\mathfrak{p}}(H)) = \text{Tr}(ad_{\mathfrak{h}}(H) | \mathfrak{p}_{\pi}) + \text{Tr}(ad_{\mathfrak{p}}(H) | \mathfrak{h}).$$

而

$$\text{Tr}(ad_{\mathfrak{p}}(H) | \mathfrak{p}_{\pi}) = \sum_{\alpha \in \Delta \setminus \{\pi_{0}\}} \alpha(H) > 0.$$

又

$$\text{Tr}(ad_{\mathfrak{p}}(H) | \mathfrak{h}) = \text{Tr}(ad_{\mathfrak{h}}(H)).$$

...
今 $X \mapsto \text{ad}_\mathfrak{g}(X)$, $\forall X \in \mathfrak{g}_1$ 为半单 Lie 代数 \mathfrak{g}_1 的一个表示，表示空间为 \mathfrak{v}. 由 \mathfrak{g}_1 半单，按照复半单 Lie 代数的表示理论，有

$$\text{Tr} \text{ad}_\mathfrak{v}(X) = 0, \quad \forall X \in \mathfrak{g}_1.$$

特别 $\text{Tr} (\text{ad}_\mathfrak{v}(H) | \mathfrak{v}) = 0$, 这证明了 $\text{Tr} (\text{ad}_\mathfrak{v}(H)) > 0$. 所以 \mathfrak{v} 不是么模 Lie 代数. 引理证完.

§ 3 D 空间

定义 如果齐性复流形 M 能表为复旁集空间 G/P, 其中 G 为连通复 Lie 群, P 为 G 的抛物子群, 则 M 称为 D 空间.

设 G/P 为 D 空间. 记 N 为 G 的根基, 它是 G 的闭正规复子群, 而且 $P \supseteq N$. 所以 G/P 完全同构于 $(G/N)/(P/N)$. 因为 G/N 为复半单 Lie 群, P/N 为 G/N 的抛物子群. 所以无妨设 G 为连通复半单 Lie 群. 由于定理 2.4 证明了抛物子群 P 与给定标准抛物子群 P_π, 所以我们证明了任一 D 空间 M 必可表为复旁集空间 G/P_π, 其中 G 为复连通半单 Lie 群, P_π 为 G 的抛物子群. 其 Lie 代数 \mathfrak{p}_π 定义见式 (2.2).

例 1 设 $G = SL(n+1, \mathbb{C})$, 则 $\mathfrak{g} = sl(n+1, \mathbb{C})$. 而

$$\mathfrak{h} = \left\{ \text{diag}(\lambda_1, \cdots, \lambda_{n+1}) \mid \sum_{i=1}^{n+1} \lambda_i = 0 \right\},$$

$$\Delta = \left\{ \lambda_i - \lambda_j, \quad 1 \leq i, j \leq n+1, \quad i \neq j \right\},$$

$$\pi = \left\{ \lambda_i - \lambda_{i+1} \mid 1 \leq i \leq n \right\}.$$

如果 $\pi_0 = \phi$, 则 P_π 为 Borel 子群, 它由 $G = SL(n+1, \mathbb{C})$ 中所有上三角方阵构成.

下面给出 G/P_π 的几何解释.

定义 \mathbb{C}^{n+1} 中子空间序列

$$V_1 \subset V_2 \subset \cdots \subset V_n$$

适合 $\dim V_i = i$, $i = 1, 2, \cdots, n$. 则 $\{V_1, V_2, \cdots, V_n\}$ 称为一个旗. 所有旗构成的集合 M 叫旗流形.

下面给出旗的一种表示式

- 119.
设 $\{V_1, V_2, \cdots, V_n\}$ 为旗。由 $V_1 \subseteq V_2 \subseteq \cdots \subseteq V_n$ 及 $\dim V_i = i$，所以 V_1 中取基 α_1 后，在 V_2 中可取基 $\alpha_1, \alpha_2, \cdots$，在 V_n 中可取基 $\alpha_1, \cdots, \alpha_n$。自然，旗可用 \mathbb{C}^{n+1} 中 n 个有序的线性无关的向量 $\{\alpha_1, \cdots, \alpha_n\}$ 来表示。显然，表达方式不唯一，\mathbb{C}^{n+1} 中向量组 $\{\alpha_1, \cdots, \alpha_n\}$ 和 $\{\beta_1, \cdots, \beta_n\}$ 表达了同一个旗当且仅当任给 $i, 1 \leqslant i \leqslant n$，则 $\{\alpha_1, \cdots, \alpha_i\}$ 和 $\{\beta_1, \cdots, \beta_n\}$ 为同一个 i 维子空间的两组基。

记
$$e_i = i(0, \cdots, 0, 1, 0, \cdots, 0) \in \mathbb{C}^{n+1}, \quad i = 1, 2, \cdots, n,$$
则由 $\{e_1, \cdots, e_n\}$ 表达的旗称为标准旗。

显然 G 中使标准旗变为标准旗的方阵全体构成 P_π。又对任一个旗，在 G 中必存在一个方阵，将标准旗映为它。所以 G 在 M 上作用可递，而关于标准旗的逆向子群为 P_π。所以 M 可表为旁集空间 G/P_π，即旗流形是 G/P_π 的几何实现。所以 G/P_π 称为旗流形，其中 $G = SL(n+1, \mathbb{C})$，P_π 由迹为 1 的上三角方阵构成。

如果取 $\pi_0 = \{\lambda_i - \lambda_{i+1}, i = 2, 3, \cdots, n\}$，这时容易证明以 \mathbb{C}^{n+1} 中所有复直线定义的复射影空间 $P^n(\mathbb{C})$ 可以表为 G/P_π。

定理 3.1 D 空间 M 是单连通的紧复流形。

证 由定义，D 空间 M 可表为 G/P_π，其中 G 为连通复半单 Lie 群，P_π 为标准子群。而 G 的 Lie 代数有根子空间分解
$$\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in \mathfrak{d}} \mathfrak{g}_{\alpha},$$
其中 \mathfrak{h} 为 Cartan 子代数。于是 \mathfrak{g} 的酉限制为
$$\mathfrak{g}_\pi = \sqrt{-1} \mathfrak{h}_\pi + \sum_{\alpha \in \mathfrak{d}} \mathfrak{g}(X_\alpha + X_{-\alpha}) + \sum_{\alpha \in \mathfrak{d}} \sqrt{-1}(X_\alpha - X_{-\alpha}).$$
由于
$$\mathfrak{v}_{\pi_0} = \mathfrak{h} + \sum_{\alpha \in \mathfrak{d}_+} \mathfrak{g}_\alpha + \sum_{\alpha \in \mathfrak{d}_0} \mathfrak{g}_\alpha \supset \mathfrak{h} + \sum_{\alpha \in \mathfrak{d}_-} \mathfrak{g}_\alpha \supset \mathfrak{h},$$
所以有
$$\mathfrak{g}_\mathfrak{R} = \mathfrak{g}_\pi + \mathfrak{v}_{\pi_0}.$$
这证明了 G/P_{x_0} 紧。

下面证 G/P_{x_0} 单连通。记 \hat{G} 为 G 的通用覆盖群，覆盖映射为 $\sigma: \hat{G} \rightarrow G$。于是 $\sigma^{-1}(P_{x_0})$ 为 \hat{G} 中抛物子群，由定理 2.2，它连通。而 G/P_{x_0} 的通用覆盖空间为 $\hat{G}/\sigma^{-1}(P_{x_0})$，它全纯同构于 G/P_{x_0}。这证明了 G/P_{x_0} 为单连通的。定理证完。

下面给出 D 空间 $M = G/P_{x_0}$ 到复射影空间内的嵌入映射。方法是利用 G 的不可约表示。为此，先证明下面引理。

引理 8.1 设 \mathfrak{g} 为复半单 Lie 代数，符号 \mathfrak{h}, \mathfrak{a}, π 如上。设 ρ 有不可约表示 $\rho: \mathfrak{g} \rightarrow \text{GL}(V)$，其中 V 为有限维线性空间。设 A 为表示 ρ 的最高权，A 的权空间为一维子空间 V_A。任取 $X \in \mathfrak{g}$。则 $\rho(X)V_A \subset V_A$ 当且仅当 $X \in p_{x_0}$，其中 p_{x_0} 是由素根集 $\pi_0 = \{\alpha \in \pi | \langle A, \alpha \rangle = 0 \}$ 决定的 \mathfrak{g} 的抛物子代数。

证 设 G 为单连通复 Lie 群，它的 Lie 代数为 \mathfrak{g}。设 G_u 为 G 的最大紧子群，使 G_u 的 Lie 代数 \mathfrak{g}_u 为 \mathfrak{g} 中西限制。确切地说，设 \mathfrak{g} 有 Cartan 子代数 \mathfrak{h}，关于 $(\mathfrak{g}, \mathfrak{h})$ 的根子空间分解为

$$\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in \Delta} \mathfrak{g}_\alpha,$$

则 $\mathfrak{g}_u = \sqrt{-1} \mathfrak{h} + \sum_{\alpha \in \Delta} \mathbb{R}(X_\alpha + X_{-\alpha}) + \sum_{\alpha \in \Delta} \sqrt{-1}(X_\alpha - X_{-\alpha})$,

其中 $0 \neq X_\alpha \in \mathfrak{g}_\alpha$，为标准基元素，适合在 §1 中给出的乘法关系。

我们可以假设 Lie 代数 \mathfrak{g} 的表示 ρ 由 Lie 群 G 的全纯表示所诱导。这个全纯表示仍记为 ρ，表示空间仍为 V，所以

$$\rho(G) \subset \text{GL}(V).$$

由于 G_u 紧，所以对 V 上存在 Hermite 内积 $(,)$，使得

$$(\rho(a)u, \rho(a)v) = (u, v), \quad \forall u, v \in V, a \in G_u.$$

于是 $(\rho(X)u, v) + (u, \rho(X)v) = 0, \forall u, v \in V, X \in \mathfrak{g}_u$.

依次取 $X = X_\alpha + X_{-\alpha}$ 及 $X = \sqrt{-1} X_\alpha - \sqrt{-1} X_{-\alpha}$，代入再相加，有

$$(\rho(X_\alpha)u, v) + (u, \rho(X_{-\alpha})v) = 0, \quad \forall u, v \in V, \alpha \in \Delta.$$

今取 $\alpha \in \Delta^+$，则有 $[X_\alpha, X_{-\alpha}] = H_\alpha$。此即

$$\rho(X_\alpha)\rho(X_{-\alpha}) - \rho(X_{-\alpha})\rho(X_\alpha) = \rho(H_\alpha).$$
任取 \(w \in V_{\Delta} \)，则有 \(\rho(H_{\alpha})w = \Lambda(H_{\alpha})w = \langle \Delta, \alpha \rangle w, \rho(X_{\alpha})w = 0 \)。所以

\[
\rho(X_{\alpha})\rho(X_{-\alpha})w = \langle \Delta, \alpha \rangle w.
\]

即

\[
(\rho(X_{\alpha})\rho(X_{-\alpha})w, w) = \langle \Delta, \alpha \rangle \langle w, w \rangle.
\]

另一方面，

\[
(\rho(X_{\alpha})\rho(X_{-\alpha})w, w) = -(\rho(X_{-\alpha})w, \rho(X_{-\alpha})w),
\]

即有

\[
\|\rho(X_{-\alpha})w\|^2 = -\langle \Delta, \alpha \rangle \|w\|^2,
\]

其中 \(\|x\|^2 = \langle x, x \rangle, \forall x \in V \)。由于 \(w \neq 0 \)。所以 \(\rho(X_{-\alpha})w = 0 \) 当且仅当 \(\langle \Delta, \alpha \rangle = 0 \)。

现在来证明引理。今任取 \(X \in g \)，即

\[
X = Y + \sum_{\alpha \in \Delta^+} a_{\alpha}X_{-\alpha},
\]

使 \(\rho(X)V_{\Delta} \subset V_{\Delta} \)，其中 \(Y \in \mathfrak{b} = \mathfrak{h} + \sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha} \)。由于 \(\rho(X_{\alpha})w = 0, \forall \alpha \in \Delta^+ \)，\(w \in V_{\Delta} \)，且 \(\rho(H)w = \Lambda(H)w \in V_{\Delta} \)，\(\forall H \in \mathfrak{h} \)。所以条件变为

\[
\sum_{\alpha \in \Delta^+} a_{\alpha}\rho(X_{-\alpha})V_{\Delta} \subset V_{\Delta}.
\]

今已知 \(\rho(X_{-\alpha})V_{\Delta} \subset V_{\Delta-\alpha} \)，其中 \(\alpha \in \Delta^+ \)。所以这样条件化为求正根 \(\alpha \)，使 \(\rho(X_{-\alpha})V_{\Delta} = 0 \) 的必要且充分条件。前面已证了这条件为 \(\langle \Delta, \alpha \rangle = 0 \)。至此证明了

\[
\{ X \in g | \rho(X)V_{\Delta} \subset V_{\Delta} \} = \mathfrak{b} + \sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha} + \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}.
\]

引理证完。

引理 3.2 设 \(G \) 为连通复半单 Lie 群，\(\rho: G \rightarrow GL(V) \) 为它的不可约全纯表示，且表示为空间维线性空间 \(V \)。\(\rho \) 诱导了 \(G \) 的 Lie 代数 \(g \) 的一个表示，仍用 \(\rho \) 记之。记 \(\Delta \) 为此不可约表示的最高权。\(\pi_0 = \{ \alpha \in \pi \mid \langle \Delta, \alpha \rangle = 0 \} \)。则

\[
P_{\pi_0} = \{ a \in G | \rho(a)V_{\Delta} \subset V_{\Delta} \}.
\]

证 由于引理 3.1，故有 \(P_{\pi_0} = \{ X \in g | \rho(X)V_{\Delta} \subset V_{\Delta} \} \)。所以记 \(P_{\pi_0} \) 为 \(G \) 中对应 Lie 代数 \(\mathfrak{g}_{\pi_0} \) 的桃物子群，必有 \(P_{\pi_0} \) 连通，且

\[
P_{\pi_0} \subset \{ a \in G | \rho(a)V_{\Delta} \subset V_{\Delta} \}.
\]

今任取 \(a \in G, \rho(a)V_{\Delta} \subset V_{\Delta} \)，任取 \(X \in \mathfrak{g}_{\pi_0} \)，则

\[
\rho(ad(a)X)V_{\Delta} = \rho(a)\rho(X)\rho(a)^{-1}V_{\Delta} \subset V_{\Delta},
\]

.122.
所以 $a\varphi_p \subset \varphi_p$, 因此 $aP_{x, a^{-1}} = P_{x, a}$, 由定理 2.2, 有

$$a \in N(P_{x, a}) = P_{x, a}$$

这证明了引理。

用引理 3.2, 立即有

定理 3.2 设 M 为 D 空间，M 为 $G/P_{x, a}$，其中 G 为连通复半单 Lie 群，$P_{x, a}$ 为由素根系 π 的子集 π_0 定义的抛物子群。设 $\rho : G \to GL(V)$ 为 G 的不可约表示，表示空间为 V，最高权为 Λ. 设 $\pi_0 = \{\alpha \in \pi | \langle \Lambda, \alpha \rangle = 0\}$. 在权空间 V_{Λ} 中取定非零向量 v

设 V 上所有复直线构成的射影空间为 $P(V)$，任取 $u \in V$，过 u 的复直线记作 $[u]$.

现在定义映射 $\bar{\Sigma} : G \to P(V)$ 为

$$\bar{\Sigma}(a) = [\rho(a)v], \quad \forall a \in G.$$

这是全纯映射。它诱导了全纯映射 $\Sigma : G/P_{x, a} \to P(V)$，定义为

$$\Sigma(aP_{x, a}) = [\rho(a)v], \quad \forall a \in G.$$

记 V 上线性变换 $\rho(a)$ 诱导了 $P(V)$ 上射影变换 $\rho'(a)$。则有

$$\Sigma(ax) = \rho'(a) \Sigma(x), \quad \forall x \in G/P_{x, a}, a \in G.$$

且像集 $\Sigma(M) = \Sigma(G/P_{x, a})$ 不包含在 $P(V)$ 的任一子空间中。

映射 Σ 是内射且具有最大秩当且仅当最高权 Λ 有性质

$$\pi_0 = \{\alpha \in \pi | \langle \Lambda, \alpha \rangle = 0\}.$$

注意，给定素根系 π 的子集 π_0, 由定理 1.7, 存在 G 的不可约表示 ρ, 使其最高权 Λ 适合定理条件。在第五章，我们还要讨论 M 的射影映射入射映射。

§4 紧齐性复流形

由于连通齐性复流形在紧的情形可以表为复劳集空间 G/L，其中 G 为连通复 Lie 群，L 为闭复 Lie 子群。例如，我们可以取 $G = H(M)^0$，其中 $H(M)$ 是 M 上所有全纯自同构构成的 Lie 群，而 $H(M)^0$ 为 $H(M)$ 的单位分量。

定理 4.1 设 $M = G/L$ 是紧复劳集空间，其中 G 为连通复 Lie 群，L 为 G 的闭复 Lie 子群。记 L^0 为 L 的单位分量。则 L^0 的正规化子 $N(L^0)$ 为 G 的抛物子群，且 $N(L^0)$ 是包含 L 的最小抛物子群。

证 记 $\dim_L L = m$，记 L 的 Lie 代数为 \mathfrak{l}，G 的 Lie 代数为 \mathfrak{g}。记 $G_r(\mathfrak{g}, m)$ 为复 Grassmann 流形。群 G 按其附属表示作用于 $G_r(\mathfrak{g}, m)$ 上。记 $A^m\mathfrak{g}$ 为 \mathfrak{g} 的 m 次外积构成的线性空间。这个线性空间的复数线全体构成射影空间 $P(A^m\mathfrak{g})$。于是存在自然的全纯嵌入，它将 $G_r(\mathfrak{g}, m)$ 映入 $P(A^m\mathfrak{g})$ 中。对这个嵌入，G 在 $G_r(\mathfrak{g}, m)$ 上的附属作用，转化且扩充为 $P(A^m\mathfrak{g})$ 上的射影线性变换。由引理 2.1，G 的 Borel 子群 B 在 $G_r(\mathfrak{g}, m)$ 上附属地作用，则含 $G_r(\mathfrak{g}, m)$ 中点 $(L$ 的 Lie 代数) 的轨道 $(adG)L$ 中有 adB 的不动点，记作 $ad(a)L$。于是任取 $b \in B$，

$ad(b)\{ad(a)L = ad(a)L$. 即 $ad(a^{-1}ba)L = L$。

所以对 B 的共轭子群 $a^{-1}Ba$，它以 L 为不动点。由于 Borel 子群的共轭群仍为 Borel 子群，所以不妨设 L 在 adB 下不动，即 $ad(b)L = L$，$\forall b \in B$。所以 $bL^0b^{-1} = L^0$，$\forall b \in B$。即 $B \subset N(L^0)$。这证明了 $N(L^0)$ 为 G 的抛物子群。

下面证 $N(L^0)$ 是包含 L 的最小抛物子群。今任 G 的抛物子群 P，设 $P \supset L$。由抛物子群为闭子群，所以复劳集空间 P/L 是 G/L 中闭子集。由 G/L 紧，即 P/L 紧。

由于对 G 的抛物子群 P_1，P_1 的 Borel 子群必为 G 的 Borel 子群，反之亦然。将第一部分证明用于复 Lie 群 P，由于 L^0 在 P
之正规化子 \(N_p(L^0) = N(L^0) \cap P \)，所以 \(N(L^0) \cap P \) 中有 \(P \) 之 Borel 子群，因此在 \(G \) 中有 Borel 子群 \(B \subseteq N(L^0) \cap P \)。所以 \(N(L^0) \cap P \) 是 \(P \) 也是 \(N(L^0) \) 的抛物子群。于是 \((N(L^0) \cap P)/L^0 \) 是 \(N(L^0)/L^0 \) 的抛物子群。

记 \(P_1 = (N(L^0) \cap P)/L^0 \)，\(L_1 = L/L^0 \)，于是 \(P_1/L_1 = N(L^0) \cap P/L \)。今 \(L_1 \) 为 \(P_1 \) 的离散子群，而 \(N(L^0) \cap P/L \) 为 \(P/L \) 的闭子集。由 \(P/L \) 紧，所以 \(N(L^0) \cap P/L = P_1/L_1 \) 紧。所以 \(P_1 \) 是么模 Lie 群。由引理 2.2，\(N(L^0)/L^0 \) 有抛物子群 \(N(L^0) \cap P/L^0 \subseteq N(L^0)/L^0 \) 是么模 Lie 群。这证明了 \(N(L^0) \cap P/L^0 = N(L^0)/L^0 \)。即证明了 \(P \supseteq N(L^0) \)。即 \(N(L^0) \) 是包含 \(L \) 的 \(G \) 的最小抛物子群。定理证完。

由这个定理，可以给出关于紧复齐性空间的三个结构定理。

定理 4.2 设 \(M \) 为连通齐性复流形，则存在一个 \(D \) 空间 \(M_1 \) 及一个全纯映射 \(\pi: M \to M_1 \) 使得纤维 \(\pi^{-1}(p) \) 是复平行流形，\(\forall p \in M_1 \)。

证 设 \(M = G/L \)，其中 \(G \) 为连通复 Lie 群，\(L \) 为 \(G \) 的闭复子 Lie 群。用定理 4.1 的记号，取 \(M_1 = G/N(L^0) \)，因为 \(N(L^0) \) 为 \(G \) 的抛物子群，所以 \(M_1 \) 是 \(D \) 空间。

记 \(\pi \) 为 \(G/N(L^0) \) 到 \(G/L \) 上的标准投影映射。则纤维都全纯同构于复旁集空间

\[
N(L^0)/L = (N(L^0)/L^0)/(L/L^0).
\]

今 \(L^0 \) 为 \(N(L^0) \) 的闭正规子群，故 \(N(L^0)/L^0 \) 为复 Lie 群，而 \(L/L^0 \) 为离散子群。已知复 Lie 群模任一离散子群都是复平行流形。这证明了定理。

定理 4.3 记号及假设同定理 4.2。如果 \(\pi_1(M)(\pi_1(M) \) 为 \(M \) 的基本群) 有限，则自然映射 \(\pi: M \to M_1 \) 的纤维都是复环面。

证 即证 \(N(L^0)/L \) 为环面。记 \(M = \hat{G}/L \)，而 \(\hat{G} \) 为 \(G \) 的通用覆盖群。所以无妨假设 \(G \) 为单连通的连通复 Lie 群。于是映射 \(\pi: G/L^0 \to G/L \) 是覆盖映射。覆盖变换群为 \(L/L^0 \)，它离散，熟知 \(L/L^0 \cong \pi_1(M) \)。由假设，\(L/L^0 \) 为有限群。
今已知\(N(L^0)/L = (N(L^0)/L^0)/(L/L^0) \)为\(G/L \)中紧子集. 由\(L/L^0 \)有限，所以\(N(L^0)/L^0 \)紧. 因为\(L^0 \)为\(N(L^0) \)的闭正规子群，所以\(N(L^0)/L^0 \)为紧复\(\text{Lie} \)群，它连通. 由第三章定理2.1，所以\(N(L^0)/L^0 \)为复环面，因此\(N(L^0)/L \)也是复环面. 定理证完.

定理4.4 如果对紧齐性复流形\(M \)，存在连通复可分\(\text{Lie} \)群\(G \)，使\(G \)在\(M \)上作用可递，则\(M \)是复平行流形.

证 记\(M = G/L \)，则由定理4.1，\(N(L^0) \)为\(G \)的抛物子群. 但\(G \)本身是复可分\(\text{Lie} \)群，所以\(G \)本身是\(G \)的Borel子群. 所以\(N(L^0) = G \). 于是\(M = G/L = N(L^0)/L \). 在定理4.2证明中给出了\(N(L^0)/L \)为复平行流形. 所以证明了\(M \)是复平行流形. 定理证完.

注意上面定理4.1到定理4.4，都是J. Tits证明的. 文献见§3的末尾. 他从定理4.1还给出了每及二维紧齐性复流形的完全分类.

下面从定理4.1导出王宪钟*关于单连通紧齐性复流形的结构定理.

定义 单连通紧齐性复流形称为\(C \)空间.

由定理3.1，\(D \)空间必为\(C \)空间.

定义 设\(G_\nu \)是一个连通紧\(\text{Lie} \)群，\(U \)是\(G_\nu \)的闭连通子群. 如果在\(G_\nu \)中存在环面子群\(S \)，使得\(U \)的核位子群等于\(G_\nu \)中\(S \)的中心化子\(O(S) \)的核位子群，即

\[
U' = O(S)',
\]

则\(U \)称为\(G_\nu \)的\(C \)子群.

引理4.1(Hopf) 设\(G_\nu \)是连通紧\(\text{Lie} \)群，\(S \)为\(G_\nu \)的环面子群，则\(S \)的中心化子\(O(S) \)是连通的.

证 任取\(a \in O(S) \)，只要证\(a \in O(S)^0 \)就行了. 熟知在\(G_\nu \)中存在极大环面子群\(T \)，使\(a \in T \). 对\(a \)的中心化子\(O(a) \)，自然\(T \subset O(a) \)，于是\(T \subset O(a)^0 \)，即\(a \in O(a)^0 \). 即\(a \)在\(O(a)^0 \)的中心中.

另一方面，由 \(a \in \mathcal{O}(S) \)，所以 \(S \supseteq \mathcal{O}(a) \)。但 \(S \) 为环面子群，即 \(S \supseteq \mathcal{O}(a)^0 \)。于是在 \(\mathcal{O}(a)^0 \) 中存在极大环面子群 \(T' \)，使 \(S \subseteq T' \)。自然 \(T' \subseteq \mathcal{O}(S)^0 \)。然而 \(\mathcal{O}(a)^0 \) 的极大环面子群包含 \(\mathcal{O}(a)^0 \) 的中心，所以 \(a \in T' \subseteq \mathcal{O}(S)^0 \)。这证明了 \(\mathcal{O}(S) = \mathcal{O}(S)^0 \)，即 \(\mathcal{O}(S) \) 连通，引理证完。

引理 4.2 (Hano–Kobayashi)* 设 \(G_u \) 为连通紧 Lie 群，\(U \) 为 \(G_u \) 的 \(O \) 子群，则存在环面子群 \(S \)，使得

\[
\mathcal{O}(S) \supseteq U \supseteq U' = \mathcal{O}(S)',
\]

这里打一撇表示原来 Lie 群的换位子群。

证 由 \(O \) 子群的定义，在 \(G_u \) 中存在环面子群 \(S_1 \)，使得 \(\mathcal{O}(S_1)' = U' \)。取 \(L = \mathcal{O}(U') \) 为 \(U' \) 在 \(G_u \) 中的中心化子，则 \(L \) 为 \(G_u \) 中闭子群，故为紧 Lie 群。记 \(Z \) 为 \(U \) 的中心的单位分量，于是 \(Z \subseteq \mathcal{O}(U') = L \)。在 \(L \) 中取包含 \(Z \) 的最大环面子群 \(S \)。下面证 \(S \)

符合引理要求。

事实上，由 \(S_1 \) 和 \(\mathcal{O}(S_1)' \) 中元可交换，所以 \(S_1 \subseteq L \)。由于紧 Lie 群的最大环面子群互相共轭，所以存在 \(l \in L \)，使得 \(lS_1l^{-1} \subseteq S \)，于是

\[
[l \mathcal{O}(S_1)l^{-1}] = \mathcal{O}(lS_1l^{-1}) \supseteq \mathcal{O}(S),
\]

然而

\[
U' = u_\mathcal{O}(S_1)l^{-1} = \mathcal{O}(S_1'l^{-1}) = [\mathcal{O}(S_1)l^{-1}]' \supseteq \mathcal{O}(S'),
\]

即证明了 \(U' \supseteq \mathcal{O}(S)' \)。另一方面，\(U = U' \cdot Z \)。由 \(Z \subseteq S \subseteq L = \mathcal{O}(U') \)

可知 \(S \) 中元和 \(Z \) 中元及 \(U' \) 中元皆可交换，即 \(U \subseteq \mathcal{O}(S) \)，因此 \(U' \subseteq \mathcal{O}(S)' \)。这证明了 \(\mathcal{O}(S)' = U' \subseteq U \subseteq \mathcal{O}(S) \)。引理证完。

引理 4.3 设 \(M = G/H \) 为实 Lie 群 \(G \) 的复旁集空间，设 \(M \)

紧，且 \(M \) 的基本群 \(\pi_1(M) \) 为有限群，则

a) (Montgomery) \(G \) 的任一最大紧子群 \(K \) 在 \(M \) 上作用可递。

b) (王宪钟) \(K \) 的任一最大半单子群在 \(M \) 上作用可递，从而 \(G \) 的最大半单子群在 \(M \) 上作用也可递。

证明请见原文

定理 4.5 (王宪钟) 设 M 是 C 空间，则 M 可表为复旁集空间 G_u/U，其中 G_u 是连通紧半单 Lie 群，U 是 G_u 的 C 子群。

且关于 M 的下面三个条件互相等价。
(1) M 是一个 D 空间，
(2) rank$(U) =$ rank(G)，
(3) $U = C(S) =$ G_u 中环面子群 S 的中心化子。

证 今 M 为 C 空间，即为连通且单连通的紧齐性复流形。所以 M 可表为复旁集空间 G/H，其中 G 为连通复 Lie 群，又 G 在 M 上作用有效。

由引理 4.3，M 可表为

$$M = G/L = G_u/U,$$

其中 G 为连通复半单 Lie 群，G_u 为 G 的最大紧子群，L 是 G 的闭子群，U 为 G_u 的紧子群，由 M 单连通，所以 U 连通。

记 G 的 Lie 代数为 \mathfrak{g}。它复半单，所以有 Cartan 子代数 \mathfrak{h}。\mathfrak{g} 关于 $(\mathfrak{g}, \mathfrak{h})$ 的根子空间分解为

$$\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in \Delta} \mathfrak{g}_\alpha,$$

其中 Δ 为关于 $(\mathfrak{g}, \mathfrak{h})$ 的根系，α 为 Δ 中按 $\mathfrak{h}_\mathbb{R}$ 的正定向引进的素根系。\mathfrak{g}_α 为 \mathfrak{g} 的 α 限制。即 \mathfrak{g} 中有适合 § 1 中关系的基元 X_α 使

$$\mathfrak{g}_\alpha = \sqrt{-1} \mathfrak{h}_\mathbb{R} + \sum_{\alpha \in \Delta} \mathbb{R}(X_\alpha + X_{-\alpha}) + \sum_{\alpha \in \Delta} \mathbb{R}\sqrt{-1}(X_\alpha - X_{-\alpha}).$$

由定理 2.4 及定理 4.1，$N(L^0)$ 为 G 的抛物子群，它由素根系 π 之子集 π_0 定义。即记 $N(L^0) = P_{\pi_0}$。使 P_{π_0} 之 Lie 代数

$$\mathfrak{p}_{\pi_0} = \mathfrak{h} + \sum_{\alpha \in \pi_0 \cup \Delta^+} \mathfrak{g}_\alpha.$$

现在来证明，在 G_u 中存在环面子群 S，使

$$G_u \cap \mathfrak{p}_{\pi_0} = U_{\pi_0}.$$

H. C. Wang (王宪钟)，见第 80 页注。
为 S 的中心化子 $C(S)$。

事实上，U_{x_1} 的 Lie 代数 $u_{x_1} = g_u \cap v_{x_1}$. 由 v_{x_1} 的定义看出，我们可以引进子代数

$$g_{x_1} = h + \sum_{\alpha \in \pi_{x_1}} g_{x_1}$$

使

$$u_{x_1} = g_u \cap v_{x_1} = g_u \cap g_{x_1}.$$

取

$$\mathfrak{h}_0 = \{ H \in h \mid \alpha(H) = 0, \forall \alpha \in \pi_0 \}.$$

显然，g_u 中 \mathfrak{h}_0 的中心化子 $C(\mathfrak{h}_0) = g_{x_1}$. 记

$$\mathfrak{z} = \mathfrak{h}_0 \cap g_u,$$

则 \mathfrak{z} 在 g_u 的中心化子

$$C_u(\mathfrak{z}) = g_{x_1} \cap g_u = u_{x_1}.$$

今 \mathfrak{z} 为 g_u 中交换紧子代数，所以它对应了 G_u 中连通紧交换 Lie 子群，即为环面子群，记作 S. 由引理 4.1，S 的中心化子 $C(S)$ 连通。而 $C(S)$ 的 Lie 代数为 u_{x_1}. 这证明了 $C(S) = U_{x_1}$.

下面证明 $C(S)' \subseteq U \subseteq C(S)$.

事实上，$C(S) = U_{x_1} = G_u \cap P_{x_1} = G_u \cap N(L^0)$. 由定理 4.3，

$$N(L^0) / L$$

是环面，即为交换紧 Lie 群，即 $N(L^0)' \subseteq L$. 所以 $P_{x_1} \subseteq L$. 于是 $(P_{x_1} \cap G_u)' \subseteq L \cap G_u$, 即 $C(S)' \subseteq L \cap G_u$. 另一方面，由于 $M = G/L = G_u/U$, 即有 $L \cap G_u = U$. 所以证明了 $C(S)' \subseteq U$. 然而 $C(S) = G_u \cap P_{x_1} = G_u \cap N(L^0)$, 由 $N(L^0) \supseteq L$, 即有

$$C(S) = G_u \cap N(L^0) \supseteq G_u \cap L = U.$$

故证明了 $C(S)' \subseteq U \subseteq C(S)$.

今 $C(S)$ 为紧 Lie 群 G_u 中闭子群，故紧，因此 $C(S)'$ 为紧半单 Lie 群，所以 $(C(S)')' = C(S)'$. 于是 $C(S)' \subseteq U' \subseteq C(S)'$, 这证明了 $C(S)' = U'$. 或 U 为 C 子群. 定理的第一个断言证完.

下面证明定理的后一个断言中条件 (1), (2), (3) 互相等价.

今已知 $U' = C(S)'$. 先从 (1) 推 (3). 今设 M 为 D 空间，即

M 可表为 $G/L = G_u/U$, 其中 L 为抛物子群. 在第一部分的证明中，用 $N(L^0)$ 是因为 L 不知是否为抛物子群. 所以写 $N(L^0)$ 为 L, 全部可以通过. 因此证明了 $C(S) = G_u \cap L = U$. 再从 (3) 推 (2), 由于 $U = C(S)$ 为紧 Lie 群 G_u 中紧子群，所以

$$103.$$
\[\text{rank } G = \text{rank } \mathcal{O}(S) = \text{rank } U. \]

最后，由 (2) 推 (1)。今有 \(M = G/L = G_u/U \)，\(\text{rank } G = \text{rank } U \)，\(\mathcal{O}(S)' = U' \)，\(U \subseteq \mathcal{O}(S) \)。由于 \(U \) 及 \(\mathcal{O}(S) \) 紧，所以
\[
\text{rank } U = \text{rank } U' + \text{rank } U/U' = \text{rank } G = \text{rank } \mathcal{O}(S)
= \text{rank } \mathcal{O}(S)' + \text{rank } \mathcal{O}(S)/\mathcal{O}(S)'.
\]

今由此可知 \(\text{rank } U/U' = \text{rank } \mathcal{O}(S)/\mathcal{O}(S)' \)。但 \(U' = \mathcal{O}(S)' \) 为 \(U \) 及 \(\mathcal{O}(S) \) 的紧半单子群，而且有 \(U \subseteq \mathcal{O}(S) \)，这证明了 \(U = \mathcal{O}(S) \)，即
\[G_u \cap P_{\pi} = G_u \cap L, \quad P_{\pi} \supset L. \] 今 \(g_u \cap p_{\pi} \supset h \)，所以 \(L \) 的 Lie 代数中有 \(g \) 的 Cartan 子代数 \(h \)，这证明了 \(L \) 的 Lie 代数即 \(p_{\pi} \)，故 \(P_{\pi} = L \)。所以 \(M = G/L \) 为 \(D \) 空间，定理证完。

注意：在后面将要证明：设 \(G_u \) 为连通紧 Lie 群，\(U \) 为 \(G_u \) 的 \(\mathcal{O} \) 子群，则旁集空间 \(G_u/U \) 有一个 \(\mathcal{O} \) 空间结构。
第五章 齐性 Kaehler 流形

§1 齐性 Kaehler 流形

定义 设 \((M, g)\) 为 Kaehler 流形。记 \(A(M, g)\) 为 \((M, g)\) 的
自同构群（定义见第三章，§1.8）。如果群 \(A(M, g)\) 在 \(M\) 上作用
可递，则 \((M, g)\) 称为齐性 Kaehler 流形。

已知群 \(A(M, g)\) 有 Lie 群结构，但是一般没有复 Lie 群结构。

定义 如果 Lie 群 \(G\) 的旁集空间 \(G/U\) 有 \(G\) 不变复结构 \(I\)，又
有 \(G\) 不变 Kaehler 度量 \(g\)，则 \((G/U, I, g)\) 称为 Kaehler 旁集空间。

定义 如果 Lie 群 \(G\) 的旁集空间 \(G/U\) 有 \(G\) 不变的非退化实
二次外微分形式 \(\Omega\)，使得 \(d\Omega = 0\)，则 \((G/U, \Omega)\) 称为具有 \(G\) 不变辛
形式 \(\Omega\) 的辛旁集空间。

这里所谓二次外微分形式 \(\Omega\) 非退化，是指对任一点 \(x \in G/U\)，
由 \(\Omega\) 定义的切空间 \(T_x(G/U)\) 上斜对称双线性形式 \(\Omega_x\) 非退化。

定理 1.1 连通齐性 Kaehler 流形 \((M, g)\) 可表为 Kaehler 旁
集空间 \((G/U, I, g)\)，其中 \(G\) 为连通 Lie 群，\(U\) 为紧子群。反之，
连通 Kaehler 旁集空间 \(G/U\) 是齐性 Kaehler 流形。

Kaehler 旁集空间 \((G/U, I, g)\) 是一个辛旁集空间，其中 \(g\) 的
Kaehler 形式是 \(G\) 不变辛形式。

证 设 \((M, g)\) 为连通齐性 Kaehler 流形。取 \(G = A(M, g)^o\)，
则 \(G\) 在 \(M\) 上作用可递。记 \(M\) 中一点关于 \(G\) 的逆向子群为 \(U\)。由
于 \(A(M, g)\) 为等度量变换群 \(I(M, g)\) 的闭子群，而关于 \(I(M, g)\)
在该点的逆向子群已知为紧子群，由于 \(U\) 为此紧子群之闭子群，
所以仍为紧 Lie 群。因此 \(U\) 为 \(G\) 的紧子群。因此，\((M, g)\) 可表
为 Kaehler 旁集空间 \((G/U, I, g)\)，其中 \(U\) 为 \(G\) 的紧子群。即证
明了第一个断言。
其他断言的证明是很容易的，定理证完。

由第三章，定理4.1及其推论可以推出所有连通对称 Hilbert 空间是齐性 Kaehler 流形。在后面可以看出 D 空间也是齐性 Kaehler 流形。熟知 C^n 中齐性有界域 D 有 Bergman 度量，它是 Kaehler 度量，它在 D 的所有全纯自同构下不变。所以齐性有界域 D 也是齐性 Kaehler 流形。

我们将用 Kaehler 旁集空间的解析结构，或者更一般地，用辛 旁集空间的解析结构来研究齐性 Kaehler 流形。下面的定理指出这样的结构可以用 Lie 代数上适合某些条件的实斜对称双线性形式所决定。

定理 1.2 设 G/U 是 Lie 群 G 的旁集空间。记 g = Lie G, \hat{g} = Lie U，其中 \hat{g} 为 g 的子代数。记 π: G → G/U 为自然映射。

如果在 G/U 上存在 G 不变辛形式 \Omega，则 G 上有形式 F = \pi^*\Omega，它在 G 下左不变，且在 g 上定义了一个实斜对称双线性形式 F，适合条件:

(1.1) \quad F(X, Y) = 0, \forall Y \in g 当且仅当 X \in \hat{g};

(1.2) \quad F(ad(a)X, ad(a)Y) = F(X, Y),
\quad \forall X, Y \in g, a \in U;

(1.3) \quad F([X, Y], Z) + F([Y, Z], X)
\quad + F([Z, X], Y) = 0,
\quad \forall X, Y, Z \in g.

反之，在 g 上任给适合条件 (1.1), (1.2), (1.3) 的实斜对称双线性形式 F，则 F 必由 G/U 的一个 G 不变辛形式 \Omega 所定义。

证 今 G/U 有 G 不变辛形式 \Omega，记 F = \pi^*\Omega。则 G 上二次外微分式 F 定义为

F(u, v) = \Omega(\varpi_a(u), \varpi_a(v)), \quad \forall u, v \in T_a(G), a \in G.

于是 F 是 G 上左不变二次外微分形式。所以取 X, Y \in g，则 F(X, Y) 为常数。所以 F 为 g 上实斜对称双线性形式。

由 \Omega 的非退化性，很容易地推出 (1.1) 成立。由 \Omega 的 G 不变性，很容易地推出 (1.2) 成立。由 d\Omega = 0，自然地推出 dF = 0。但
是

\[(dF)(X, Y, Z) = X \cdot F(Y, Z) + YF(Z, X) + ZF(X, Y) - F([X, Y], Z) - F([Y, Z], X) - F([Z, X], Y),\]

\[\forall X, Y, Z \in \mathfrak{g}.\] 如果 \(X, Y, Z \in \mathfrak{g}\), 则 \(F(X, Y), F(Y, Z), F(Z, X)\) 是常数, 所以推出了 (1.4) 成立。

反之, 假设 \(\mathfrak{g}\) 上有实斜对称双线性形式 \(F\), 该 \(F\) 适合条件 (1.1), (1.2), (1.3). 于是 \(F\) 定义了 \(G\) 上左不变二次外微分形式. 易证由这些条件, 可知在 \(G/U\) 上存在 \(G\) 不变辛形式 \(\Omega\), 使得 \(\pi^*\Omega = F\). 这就证明了定理.

下面来考虑条件 (1.1), (1.2), (1.3). 首先, 有

\[(1.2)' \quad F([Z, X], Y) + F(X, [Z, Y]) = 0,\]

\[\forall X, Y \in \mathfrak{g}, Z \in \mathfrak{u}.\] 事实上, 由 (1.3), 有

\[F([Z, X], Y) + F([Y, Z], X) + F([X, Y], Z) = 0,\]

所以有

\[F([Z, X], Y) + F(X, [Z, Y]) = F(Z, [X, Y]).\]

由条件 (1.1), 因为 \(Z \in \mathfrak{u}\), \([X, Y] \in \mathfrak{g}\), 所以有 \(F(Z, [X, Y]) = 0\). 这证明了 (1.2)' 成立.

另一方面, 由条件 (1.2), 立即可以推出条件 (1.2)'.

反之, 设 \(U\) 连通, 则条件 (1.2) 和条件 (1.2)' 等价. 所以当 \(U\) 连通时, 条件 (1.2) 是条件 (1.1) 及条件 (1.3) 的推论.

定理 1.3 符号同定理 1.2. 假设 \(G/U\) 上存在 \(G\) 不变复结构 \(I\), 假设在复旁集空间 \((G/U, I)\) 上存在 \(G\) 不变 Kaehler 度量 \(g\). 则由 \(I\) 构造的 \(g\) 上 Koszul 算子 \(J\) 及 \(g\) 的 Kaehler 形式 \(\Omega\) 所定义的形式 \(F\) 间有关系

\[(1.4) \quad F(JX, Y) + F(X, JY) = 0, \quad \forall X, Y \in \mathfrak{g};\]

\[(1.5) \quad F(X, JX) \geq 0, \quad \forall X \in \mathfrak{g}, \text{ 且等号成立当且仅当} \]

\[X \in \mathfrak{u}.\]

反之, 若 Lie 代数 \(g\) 上有 Koszul 算子 \(J\) 以及实斜对称双线性
形式 F，它们适合条件 (1.1)～(1.5)，则在复旁集空间 $(G/U, I)$
上存在 G 不变 Kaehler 度量 g，使 g 的 Kaehler 形式 Ω 由 F 所
定义。

证：先证前一断言，令
$$ F(u, v) = \Omega(d\pi_a(u), d\pi_a(v)) $$
$$ = g(I\pi_a(u), I\pi_a(v)), \quad \forall u, v \in T_a(G), a \in G. $$
于是任取 $X, Y \in g$，取 $a = e$ 为 G 的单位元素，则
$$ F(X, JY) = g(1\pi_e(X), 1\pi_e(Y)) $$
$$ = g(d\pi_e(X), d\pi_e(Y)), $$
$$ F(JX, Y) = -F(Y, JX) = -g(d\pi_e(Y), d\pi_e(X)) $$
$$ = -g(d\pi_e(X), d\pi_e(Y)). $$
这证明了式 (1.4) 成立。再
$$ F(X, JX) = g(d\pi_e(X), d\pi_e(X)) \geq 0, \quad \forall X \in g. $$
等号成立当且仅当 $d\pi_e(X_e) = 0$，此即 $X \in \mathfrak{u}$。这证明了式 (1.6)
成立。

反之，如果 g 上实斜对称双线性形式 F 适合 (1.1)～(1.5)，
于是在 G/U 上存在 (1.1) 型 G 不变二次外微分形式 Ω，使得 $\pi^*\Omega$
$= F$。易证在 G/U 上有二阶对称张量场 g，使得
$$ g_\pi(u, v) = \Omega(u, v), \quad \forall u, v \in T_a(G/U), a \in G/U. $$
它定正，所以 g 为 G/U 上 G 不变 Kaehler 度量，使得它的 Kaehler 形式为 Ω。定理证完。

§ 2 紧齐性 Kaehler 流形

在这一节，我们给出连通紧齐性 Kaehler 流形的结构。设
(M, g) 为连通紧齐性 Kaehler 流形。由定理 1.1，它可表为
Kaehler 旁集空间 $(G/U, I, g)$，其中 U 为 Lie 群 G 的紧子群，
所以 G 也是紧 Lie 群。

下面先来研究连通紧 Lie 群 G 的辛旁集空间 $(G/U, \Omega)$。先
给出两个关于 Lie 代数的引理。

• 134 •
引理 2.1 设 \mathfrak{g} 为半单 Lie 代数, B 为 \mathfrak{g} 的 Killing 型, 设 F 为 \mathfrak{g} 上实斜对称双线性形式, 使得它适合条件

$$
F([X, Y], Z) + F([Y, Z], X) + F([Z, X], Y) = 0,
$$
\forall X, Y, Z \in \mathfrak{g}.$$

于是, 存在唯一的元素 $W \in \mathfrak{g}$, 使得

$$F(X, Y) = B([W, X], Y) = B(W, [X, Y]), \forall X, Y \in \mathfrak{g}.$$

反之, 任取 $W \in \mathfrak{g}$, 则 $F(X, Y) = B(W, [X, Y]), \forall X, Y \in \mathfrak{g}$ 合适条件(2.1).

证 后一断言显然, 下面证前一断言. 由 Killing 型的不变性, 所以有 $B([W, X], Y) = B(W, [X, Y])$. 下面证存在 $W \in \mathfrak{g}$, 使得 $F(X, Y) = B([adW]X, Y), \forall X, Y \in \mathfrak{g}$.

令 B 在 \mathfrak{g} 上非退化, 所以对双线性形式 F, 存在 \mathfrak{g} 上线性变换 A, 使得

$$F(X, Y) = B(A(X), Y), \forall X, Y \in \mathfrak{g}.$$

由于 $F(X, Y) + F(Y, X) = 0$, 有

$$B(A(X), Y) + B(A(Y), X) = 0.$$

再由式(2.1), 有

$$B(A([X, Y]), Z) + B(A([Y, Z]), X) + B(A([Z, X]), Y) = 0,$$
\forall X, Y, Z \in \mathfrak{g}.$$

所以有

$$B(A([X, Y]), Z) = B(A(X), [Y, Z]) + B(A(Y), [Z, X]).$$

此即

$$B(A([X, Y]), Z) = B([A(X), Y], Z) + B([X, A(Y)], Z).$$

由 B 非退化, 取 Z 遍历 \mathfrak{g}, 有

$$A([X, Y]) = [A(X), Y] + [X, A(Y)], \forall X, Y \in \mathfrak{g}.$$

这证明了 A 为 \mathfrak{g} 上的微分. 由第二章, 命题 4.1, 半单 Lie 代数的微分都是内微分, 所以存在 $W \in \mathfrak{g}$, 使得 $A = adW$. 这证明了
\[F(X, Y) = B(\text{ad}(W)X, Y) \]

最后，证唯一性。若存在 \(W, W_1 \in \mathfrak{g} \)，使
\[F(X, Y) = B(\text{ad}(W)X, Y) \]
\[= B(\text{ad}(W_1)X, Y), \quad \forall X, Y \in \mathfrak{g}. \]

由 \(B \) 的非退化性，有 \([W - W_1, X] = 0, \forall X \in \mathfrak{g} \)。但是 \(\mathfrak{g} \) 半单，所以中心为零，即证明了 \(W = W_1 \)。唯一性证完。定理证完。

注意 引理 2.1 的结论，用 Lie 代数的上同调理论的语言来表达。实际上证明了半单 Lie 代数 \(\mathfrak{g} \) 的二阶上同调群
\[H^2(\mathfrak{g}, \mathbb{R}) = 0. \]

引理 2.2 设 \(\mathfrak{g} \) 为实结约 Lie 代数，即 \(\mathfrak{g} \) 有理想子代数的直接和分解
\[\mathfrak{g} = \mathfrak{r} + \mathfrak{g}', \]
其中 \(\mathfrak{r} \) 为 \(\mathfrak{g} \) 的中心，\(\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}] \) 为 \(\mathfrak{g} \) 的换位子代数，它是 \(\mathfrak{g} \) 的半单理想。

设 \(F \) 是 Lie 代数 \(\mathfrak{g} \) 上实斜对称双线性形式，且适合条件 (2.1)，则有 \(F(\mathfrak{r}, \mathfrak{g}') = 0 \)。

证明 取 \(Z \in \mathfrak{r}, X, Y \in \mathfrak{g} \)。由 \([Z, X] = [Y, Z] = 0 \)，所以
\[0 = F([X, Y], Z) + F([Z, X], Y) + F([Y, Z], X) \]
\[= F([X, Y], Z). \]
这证明了 \(F(\mathfrak{g}', \mathfrak{r}) = 0 \)。引理证完。

我们知道，紧 Lie 代数是约化 Lie 代数。所以引理 2.2 对紧 Lie 代数也成立。

定理 2.1 设 \(G \) 为连通紧 Lie 群，\(\mathfrak{g} \) 为 \(G \) 的中心，记 \(\mathfrak{g}' = \mathfrak{g} \) 的换位子群，记 \(\mathfrak{r} = \text{Lie} \mathfrak{g} \)，\(\mathfrak{g}' = \text{Lie} \mathfrak{g}' \)，\(\mathfrak{r} = \text{Lie} \mathfrak{g} \)。设 \(G/U \) 为劳集空间，使 \(G \) 在其上作用有效、设在 \(G/U \) 上有 \(G \) 不变辛形式 \(\Omega \)，则有

(1) \(U \subset \mathfrak{g}' \)，
(2) 存在元素 \(W \in \mathfrak{g}' \)，使得*。

* 对 Lie 群 \(G \)，记 \(S \) 为 \(G \) 中子集，则 \(C_G(S) = \{ a \in G | as = sa, \forall s \in S \} \) 称为群 \(G \) 中集合 \(S \) 的中心子化。显然，它是 Lie 群 \(G \) 的子子群。

对 Lie 代数 \(\mathfrak{g} \)，记 \(S \) 为 \(\mathfrak{g} \) 中子集，则 \(C_{\mathfrak{g}}(S) = \{ X \in \mathfrak{g} | [X, T] = 0, \forall T \in S \} \) 称为 Lie 代数 \(\mathfrak{g} \) 中集合 \(S \) 的中心子化。显然，它是 Lie 代数 \(\mathfrak{g} \) 的子子代数。
(a) U 的 Lie 代数 $\mathfrak{u} = C_G(W)$;
(b) $\text{Ad}(a)W = W, \ \forall a \in U$;
(c) 取 $F = \pi^*\Omega$, 则 $F(\tau, \mathfrak{g}') = 0$, 且

$$F'(X, Y) = B(W, [X, Y]), \ \forall X, Y \in \mathfrak{g}'$$

其中 B 为 Lie 代数 \mathfrak{g} 的 Killing 型.
(3) 在 U 中存在一个环面 S, 使得 $U = C_G(S)$, 且 U 连通.
(4) $G = C \times G'$ 为直乘积, 特别 C 是连通 Lie 群, G' 的中心为单位元素.
(5) $G/U = C \times G'/U$ 为辛齐性空间的直乘积.

证. 由条件 G/U 有 G 不变辛形式 Ω, 考虑 $F = \pi^*\Omega$, 则 F 为 \mathfrak{g} 上适合条件 (2.1) 的实斜对称双线性形式. 由引理 2.2, 有

$$F(\tau, \mathfrak{g}') = 0.$$

记

$$F_1 = F|_\tau, \ F_2 = F|_{\mathfrak{g}'}.$$

记射影 $p_1: \mathfrak{g} = \tau + \mathfrak{g}' \rightarrow \tau, \ p_2: \mathfrak{g} = \tau + \mathfrak{g}' \rightarrow \mathfrak{g}'$, 则

$$F(X, Y) = F_1(p_1X, p_1Y) + F_2(p_2X, p_2Y), \ \forall X, Y \in \mathfrak{g}.$$

由条件 (2.1), 所以 F_2 在 \mathfrak{g}' 上适合条件 (2.1). 由引理 2.2, 存在元素 $W \in \mathfrak{g}'$, 使

$$F_2(X, Y) = B(W, [X, Y])$$

$$= B([W, X], Y), \ \forall X, Y \in \mathfrak{g}'.$$

其中 B 为紧 Lie 代数 \mathfrak{g} 的 Killing 型. 由于 \mathfrak{g}' 为 \mathfrak{g} 的理想, 所以 $B|_{\mathfrak{g}'}$ 为 \mathfrak{g}' 的 Killing 型. 今 τ 为 \mathfrak{g} 的中心, 所以有

$$B(\tau, \mathfrak{g}') = 0.$$

于是 $B(\tau, W) = 0$, 因此

$$F(X, Y) = F_1(p_1X, p_1Y)$$

$$+ B([W, X], Y), \ \forall X, Y \in \mathfrak{g}.$$

现在依次证明 5 个性质.
(1) 之证. 我们只证 $U^0 \subset G'$, 其中 U^0 为 U 的单位分量. 在 (3) 中证 U 连通, 即 $U^0 = U$. 所以完成了 (1) 之证明 $U \subset G'$.

为了证 $U^0 \subset G'$, 要证任取 $X \in \mathfrak{u}$, 则 $p_1X = 0$. 由上面 F 的表达式以及 $F(\tau, \mathfrak{g}') = 0$ 可知
\[F(p_1X, Y) = F(p_1X, p_1Y) = F(X, p_1Y), \quad \forall Y \in g, \]

由定理 1.2 有 \(F(\bar{u}, g) = 0 \)，所以证明了

\[F(p_1X, Y) = 0, \quad \forall Y \in g. \]

由定理 1.2 可知 \(p_1X \in \bar{u} \cap \tau \)。另一方面，\(\bar{u} \cap \tau \) 为 \(g \) 的理想，但是 \(G \) 在 \(G/U \) 上作用有效，这证明了 \(\bar{u} \cap \tau = 0 \)。所以证明了 \(p_1X = 0 \)，

\[\forall X \in \bar{u}, \quad \bar{u} \subset g', \quad \text{因此} \quad U^0 \subset G'. \]

(2) 之证。由引理 2.1 可知 (a) 成立。下面证 (a), (b) 成立。先证 (a) 成立。今 \(X \in \bar{u} \) 当且仅当 \(F(X, Y) = 0, \forall Y \in g, \) 当且仅当 \(F(X, Y) = 0, \forall Y \in g' \)。由 (a)，这时 \(F(X, Y) = B([W, [X, Y]]) = B([W, X], Y) \)。所以 \(X \in \bar{u} \) 当且仅当 \(B([W, X], Y) = 0, \forall Y \in g' \)。今 \(B|g' \) 为 \(g' \) 的 Killing 型。由 \(g' \) 半单，所以 \(B|g' \) 非退化。这证明了 \(X \in \bar{u} \) 当且仅当 \([W, X] = 0, \) 即 \(X \in C_{g'}(W) \)。这证明了 \(\bar{u} = C_{g'}(W) \)。再证 (b) 成立。由 \(F \) 的性质 (1.2) 有

\[F(Ad(a)X, Ad(a)Y) = F(X, Y), \quad \forall X, Y \in g, \ a \in U, \]

所以有

\[B(W, [Ad(a)X, Ad(a)Y]) = B(W, [X, Y]). \]

所以

\[B(W, [X, Y]) = B(W, Ad(a)[X, Y]) = B(Ad(a)^{-1}W, [X, Y]), \]

或

\[B(W - Ad(a)^{-1}W, [X, Y]) = 0, \forall X, Y \in g. \]

此即 \(B(W - Ad(a)^{-1}W, g') = 0, \) 由 \(g' \) 半单，从而 \(B|g' \) 非退化，所以 \(W - Ad(a)^{-1}W \Subset \tau \)。另一方面，\(W - Ad(a)^{-1}W \in g' \)。这证明了 \(W = Ad(a)^{-1}W, \) 即 \(Ad(a)W = W, \forall a \in U. \) 这就证明了 (b) 成立。

(3) 之证。取 \(S \) 为单参数子群 \(\{ \exp tW | t \in \mathbb{R} \} \) 的闭包，所以它是环面子群。今已知 \(Ad(a)W = W, \forall a \in U. \) 所以 \(a(\exp tW)a^{-1} = \exp tW, \) 即 \(a \in C_{0}(\exp tW), \) 即 \(a \in C_{0}(S), \) 或 \(U \subset C_{0}(S). \)

今 \(G = G \cdot C. \) 任取 \(a \in U, \) 则 \(a = bc, \ b \in G', \ c \in C. \) 由 \(a \in C_{0}(S), \) 所以 \(b \in C_{0'}(S). \) 另一方面，由 (2) 之 (a) 有 \(U^0 = C_{0'}(S)^0, \) 由第四章的引理 3.2 有 \(C_{0'}(S) = C_{0'}(S)^0. \) 这证明了 \(U^0 = C_{0'}(S), \)

即 \(b \in U^0. \) 于是 \(c = b^{-1}a \in U \cap C. \)

\cdot 138 \cdot
由条件，G 在 G/U 上作用有效，而 $U \cap C$ 为 U 中 G 之闭正规子群，所以 $U \cap C = \{e\}$. 这证明了 $e = b^{-1}a = e$, 即 $a = b$. 从而证明了 $U = U^0$, 即 U 连通，又证明了 $U = U^0 = C_0(S)^0 = C_0(S)$.

(4) 之证. 已知 $G = G' \cdot C$, 为了证它是直乘积，要证 $G' \cap C = \{e\}$. 今 G 在 G/U 上作用有效，所以 $U \cap C = \{e\}$. 由(3) 可知 $U = C_0(S)$，这证明了 $C_0(S) \cap C = \{e\}$. 但是 $G' \cap C \subset C_0(S) \cap C = \{e\}$. 这证明了 $G' \cap C = \{e\}$，所以有直乘积 $G = G' \times C$.

由于 G 连通，所以推出了 C 连通，今 G' 的中心也是 G 的中心，所以由 $G' \cap C = \{e\}$ 可知 G' 的中心为 $\{e\}$.

(5) 之证. 由(4) 有 $G = G' \times C$，由(1) 有 $U \subset G'$，所以证明了作为 G' 流形有拓扑积分解 $G/U = C \times (G'/U)$.

另一方面，$F = F_1 + F_2$，由定理 1.2，F_1 定义了 C 上不变辛结构 Ω_1，F_2 定义 G'/U 上不变辛结构 Ω_2. 由于 $F(v, \alpha') = 0$，所以 $(G/U, \Omega) = (C, \Omega_1) \times (G'/U, \Omega_2)$，即作为辛齐性空间，$G/U$ 有拓扑积分分解 $G/U = C \times (G'/U)$.

至此定理证完.

定理 2.2 符号同定理 2.1. 假设 G 在旁集空间 G/U 上作用可逆，且在 G/U 上存在 G 不变 Kaehler 结构，使得 $(G/U, I, g)$ 为 Kaehler 旁集空间. 则

(1) U 是连通紧子群;
(2) 在 G' 中存在环面子群 S'，使得 $U = C_0(S)$;
(3) $G = C \times G'$ 为直乘积;
(4) G/U 有 Kaehler 旁集空间的拓扑积分分解 $G/U = C \times (G'/U)$，其中 C 为具有不变 Kaehler 度量的复环面，G'/U 为 G' 的 Kaehler 旁集空间．

(5) G'/U 单连通．

证 由于 G/U 上存在 G 不变 Kaehler 结构，所以作为实流形，在 G/U 上有 G' 不变辛结构．因此定理 2.1 的结论在现在成立，所以(1)，(2)，(3) 成立．而性质(4)，只知 G/U 有辛旁集空间的拓扑积分分解 $G/U = C \times (G'/U)$．下面证明实际上是由作为
Kashler 旁集空间的拓扑积分分解。

今 Lie 代数 \(\mathfrak{g} \) 有 Koszul 算子 \(J \) 及实斜对称双线性函数 \(F \)。而紧 Lie 代数 \(\mathfrak{g} \) 有理想子代数直接和分解

\[\mathfrak{g} = \tau + \mathfrak{g}' \]

已知 \(U \subset G' \), 所以 \(\mathcal{U} = \text{Lie} U \subset \mathfrak{g}' \)。注意 \(U \) 为 \(G \) 之闭子群，而 \(G \) 紧，所以 \(U \) 紧，因此存在 \(\mathfrak{g}' \) 之子空间 \(m \), 使得 \(\mathfrak{g}' \) 有空间直接和

\[\mathfrak{g}' = \mathcal{U} + m \]

且

\[\text{Ad}(a)m = m, \quad \forall a \in U. \]

对自然映射 \(\pi: G \to G/U \) 及 \(G/U \) 上的 \(G \) 不变复结构 \(I \), 已知有

\[d\pi \cdot J = I \cdot d\pi, \]

我们将 \(\mathfrak{g} \) 与 \(T_{\pi}(G') \) 看作一样，\(\mathfrak{g}/\mathcal{U} \) 与 \(T_{\pi}(G'/U) \) 看作一样，则可以证明

(i) \(J\tau \subset \tau + \mathcal{U} \),

(ii) \(g_{\pi(\tau)}(\pi X, \pi Y) = 0, \quad \forall X \in \tau, Y \in \mathfrak{g}' \),

(iii) \(J\mathfrak{g}' \subset \mathfrak{g}' \).

下面依次给出证明。

(i) 之证。

已知取 \(Y \in \mathcal{U} \), 则

\[J [Y, X] = [Y, JX], \quad \text{mod} \, \mathcal{U}. \]

所以取 \(X \in \tau \), 则 \([Y, JX] \in \mathcal{U} \), 即 \([\mathcal{U}, JX] \subset \mathcal{U} \). 这证明了 * \(J\tau \subset N(\mathcal{U}) \). 由定理 2.1 之 (2), a) 有 \(\mathcal{U} = \mathcal{O}_{\mathfrak{g}}(W) \), 所以 \(\mathcal{U} \) 中有 \(\mathfrak{g}' \) 的极大交換子代数，即 \(\mathcal{U} \) 中有 \(\mathfrak{g}' \) 的 Cartan 子代数。这证明了

\[N_{\mathfrak{g}}(\mathcal{U}) = \mathcal{U}, \quad \text{by} \ \tau \text{ of } \mathfrak{g} \text{ in the center, so } N_{\mathfrak{g}}(\mathcal{U}) = \mathcal{U} + \tau. \]

但是 \(J\tau \subset N_{\mathfrak{g}}(\mathcal{U}) \), 这证明了 \(J\tau \subset \tau + \mathcal{U} \).

(ii) 之证。

由定理 2.1 之证明可知，记 \(F_1 = F|\tau, F_2 = F|\mathfrak{g}' \), 而 \(F(X, * \right)

* 对 Lie 代数 \(\mathfrak{g} \) 中子代数 \(S \), 则

\[N(S) = \{ X \in \mathfrak{g} | [X, S] \subset S \} \]

仍为 \(\mathfrak{g} \) 的子代数，称为 \(\mathfrak{g} \) 中 \(S \) 的正规化子。
\(Y = F_1(p_1X, p_1Y) + F_2(p_2X, p_2Y) \). 所以取 \(X \in \tau, Y \in g' \), 则由 (i), \(JX \in \tau + \tilde{u} \), 即 \(p_{\omega}JX \in \tilde{u} \), \(p_1(Y) = 0 \). 而

\[
\begin{align*}
g_{\pi(\sigma)}(\pi X, \pi Y) &= g_{\pi(\sigma)}(\pi Y, \pi X) = \Omega(\pi Y, I\pi X) \\
&= F(Y, JX) = F_1(p_1Y, p_1JX) \\
&\quad + F_2(p_2Y, p_2JX) = 0.
\end{align*}
\]

(iii) 之证.

取 \(X \in \tau, Y \in g' \). 由 (i), \(\pi(JX) \subset \pi(\tau) \), 由 (ii),

\[
\begin{align*}
g_{\pi(\sigma)}(\pi X, \pi JY) &= g_{\pi(\sigma)}(\pi X, I\pi Y) \\
&= -g_{\pi(\sigma)}(I\pi(X), \pi(Y)) \\
&= -g_{\pi(\sigma)}(\pi J(X), \pi(Y)) = 0.
\end{align*}
\]

但是 \(g_{\pi(\sigma)} \) 非退化，又 \(\pi(\sigma) = \pi(\tau) + \pi(\tilde{u}) \), 使 \(\pi(\tau) \) 和 \(\pi(\tilde{u}) \) 关于 \(g_{\pi(\sigma)} \) 互为正交补。所以 \(\pi JY \) 和 \(\pi(\tau) \) 正交，即 \(\pi JY \in \pi(g') \). 由于 \(\pi \) 之核在 \(\tilde{u} \) 中，而 \(\tilde{u} \subset g' \), 所以证明了 \(JY \in g' \). 这证明了 \(Jg' \subset g' \).

利用性质 (i) 和 (iii), 我们可以在 \(\tau + \tilde{u} \) 及 \(g' \) 上分别引进 Koszul 算子 \(J_1, J_2 \), 即 \(J(\tau + \tilde{u}) = J_1, J\mid g' = J_2 \). 由 \(g' \) 上 Koszul 算子 \(J_2 \) 及实斜对称双线性形式 \(F_2 \), 在旁集空间 \(G'/U \) 上可以引进 \(G' \) 不变复结构 \(I_2 \) 及 \(G' \) 不变 Kaehler 度量 \(g_2 \), 使得 \((G'/U, I_2, g_2) \) 为 Kaehler 旁集空间. 由 \(\tau + \tilde{u} \) 上 Koszul 算子 \(J_1 \) 及实斜对称双线性形式 \(F_1 \), 在旁集空间 \(C \cdot U/U \) 上可以引进不变复结构及不变 Kaehler 度量. 由定理 2.1 的 (4), 作为流形有 \(C \cdot U/U \cong C \).

所以在 \(C \) 中可引进 \(C \) 不变复结构 \(I_1 \) 及 \(C \) 不变 Kaehler 度量 \(g_1 \), 使 \((C, I_1, g_1) \) 为 Kaehler 旁集空间.

另一方面, \(G/U \) 的复结构 \(I \) 定义了 \(T_{\pi(\sigma)}(G/U) = g/\tilde{u} \) 上线性变换 \(I_0 \), 而 \(\tau \) 和 \(g'/\tilde{u} \) 为 \(I_0 \) 的不变子空间，又 \(g/\tilde{u} = \tau + g'/\tilde{u} \). 所以 \(I_0 \mid \tau \) 诱导了 \(C \) 的复结构, 它就是 \(I_1 \), 又 \(I_0 \mid g'/\tilde{u} \) 诱导了 \(G'/U \) 的复结构, 它就是 \(I_2 \). 至此, 证明了 \(G/U = C \times G'/U \) 为复流形的拓扑积分解, 又 \(G/U \) 的 Kaehler 度量 \(g \) 诱导了 \(C \) 及 \(G'/U \) 的 Kaehler 度量, 它们分别就是 \(g_1 \) 及 \(g_2 \). 因此证明了 \(G/U = C \times G'/U \) 为 Kaehler 流形的拓扑积分解，这就完成了性质 (4) 的证明.
现在来证性质(5)。为此只要假设 $G = G'$，即 G 为连通紧半单 Lie 群，而 G 之中心由单位元素构成。由 Weyl 定理，G 的通用覆盖群 \hat{G} 也是紧的。记 $\varphi : \hat{G} \to G$ 为覆盖映射，记 $\varphi^{-1}(U)^0 = \hat{U}$。则旁集空间 G/U 的通用覆盖空间是紧旁集空间 \hat{G}/\hat{U}。所以为了证 G/U 单连通，只要证 $\hat{G}/\hat{U} = G/U$ 即可。

下面证 \hat{G} 的中心 N 为 \hat{U} 中 \hat{G} 的极大正规子群，且
$$G/U \cong (\hat{G}/N)/(\hat{U}/N).$$

事实上，记 N 为 \hat{U} 中 \hat{G} 的极大正规子群，则 $\varphi(N)$ 为 U 中 G 的正规子群。由于 G 在 G/U 上作用有效，所以 U 中 G 的正规子群为 $\{e\}$。这证明了 $\varphi(N) = \{e\}$。

熟知，对覆盖映射 $\varphi : \hat{G} \to G$，则 φ 为 Lie 群的同态，同态核为 \hat{G} 的离散正规子群，属于 \hat{G} 的中心 \hat{O}。所以证明了 $N \subseteq \hat{O}$。

今 \hat{G}/N 在 \hat{G}/\hat{U} 上作用有效，于是 $\hat{G}/N/\hat{U}/N$ 为 Kaehler 旁集空间。由(3)，\hat{G}/N 的中心为 $\{e\}$。这证明了 \hat{G} 的中心为 N，即证明了 $N = \hat{O}$。于是由覆盖映射 $\varphi : \hat{G} \to G$，诱导了同构映射 $\varphi : \hat{G}/N \cong G$。于是
$$G/U \cong (\hat{G}/N)/(\hat{U}/N) \cong \hat{G}/\hat{U},$$
这证明了 G/U 单连通。即证明了(5)成立，定理证完。

注意 在下一节可以证明定理 2.2 中出现的空间 G'/U 作为复流形是 D 空间。

推论 半单型紧 Hermite 对称空间是单连通的。
证 从上述定理可知推论显然成立。

重要注记 这一节内容来自 A. Borel* 和 Y. Matsushima**。事实上，他们在 G 为约化 Lie 群的条件下，证明了定理 2.1 和 2.2。当然，在定理 2.1 的情形，需要假设 U^0 是紧的。

在一般情形，借助于 Hopf 引理，U 的连通性可以由下面引理

得到。

引理（Borel）设 G 是实连通半单 Lie 群，S 是 G 的环面子群，如果 $C(S)^0$ 紧，则 $C(S) = C(S)^0$。

这样，对定理 2.1 及 2.2，除了定理 2.2 的(1) 中的断言，U^0 是紧的外，证明可以不作任何改变。对引理（Borel）及定理 2.2 之 (1) 的证明见 Matsushima 的论文。

注意 A. Borel 和 R. Remmert* 证明了下面定理。设 M 是紧复性空间，它具有 Kähler 度量。则作为复流形，有 $M = T \times M_1$，其中 T 是一个复环面，M 是一个 D 空间。

§ 3 半单 Lie 群的旁集空间上的不变复结构

设 G 是连通 Lie 群，G/U 是 G 的旁集空间。我们有兴趣于下面的问题：在什么样的 G/U 上存在 G 不变 Kähler 结构？如果它存在，有多少？下面在 G 为半单 Lie 群的情形讨论这个问题。

设 G 是连通实半单 Lie 群，U 是 G 的闭子群。从定理 2.2 以及随后的注记的角度，为了我们的目的，可以假设 U 是连通紧 Lie 群，且是环面子群 S 的中心化子 $C(S)$。于是 U 包含了 G 的中心。如果 G 在 G/U 上作用有效，则 G 的中心由单位元素 {e} 构成。

记 g 为 G 的 Lie 代数，g^c 为 g 的复化，在 g^c 中存在紧实形式 g_u，以及定义 g_u 的对合自同构 θ。由第二章定理 4.7，记

$$g_u = \mathfrak{t} + \mathfrak{p}$$

为 g_u 关于 θ 的标准分解，则

$$g = \mathfrak{t} + \sqrt{-1} \mathfrak{p},$$

将 θ 扩充为 g^c 的自同构。记 σ 和 τ 分别为关于 g 及 g_u 的 g^c 的共轭变换，则有

$$\theta = \sigma \tau = \tau \sigma.$$

记 G^c 为 g^c 的附属群，由于 G 的中心由单位元素构成，所以可

以设 $G \subset G^\mathfrak{e}$, 记 $G^\mathfrak{e}$ 的 Lie 代数为 $\mathfrak{g}^\mathfrak{e}$, 则由 \mathfrak{g}_u 为 \mathfrak{g} 的紧实形式, \mathfrak{g}_u 对应了 $G^\mathfrak{e}$ 中紧子群 G_u。

记 K 为 G 中对应于子代数 \mathfrak{k} 的子群, 则 K 为 G 的最大紧子群, 且 $K = G \cap G_u$.

今由于群 $U = O(S)$ 紧, 所以可以假设 $U \subset K$. 另一方面, 熟知环面包含了一个稠密的单参数子群, 即存在元素 $W \in \mathfrak{g}$, 使得 S 为 G 中元系 $\{ \exp tW | t \in \mathbb{R} \}$ 的闭包. 由于 S 紧, $\text{ad}(W)$ 为 \mathfrak{g} 中半单算子, 由第四章命题 1.1, 所以 \mathfrak{g} 中有一个 Cartan 子代数 \mathfrak{h} 闭 W. 设 T 是 G 中对应于 \mathfrak{h} 的子群, 则我们有

$$S \subset T \subset U = O(S) \subset K.$$

所以有

$$\mathfrak{h} \subset \mathfrak{u} \subset \mathfrak{t},$$

其中 $\mathfrak{u} = \text{Lie} U$. 分别记 $\mathfrak{h}^\mathfrak{e}$, $\mathfrak{u}^\mathfrak{e}$, $\mathfrak{t}^\mathfrak{e}$ 为 \mathfrak{h}, \mathfrak{u}, \mathfrak{t} 的复化, 则有

$$\mathfrak{h}^\mathfrak{e} \subset \mathfrak{u}^\mathfrak{e} \subset \mathfrak{t}^\mathfrak{e}. \tag{3.1}$$

由于 $\mathfrak{h}^\mathfrak{e}$ 为复单 Lie 代数 $\mathfrak{g}^\mathfrak{e}$ 的 Cartan 子代数, 令 Δ 是 $\mathfrak{g}^\mathfrak{e}$ 的关于 $\mathfrak{h}^\mathfrak{e}$ 的根系, 记 $\mathfrak{g}^\mathfrak{e}$ 的根子空间分解为

$$\mathfrak{g}^\mathfrak{e} = \mathfrak{h}^\mathfrak{e} + \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}. \tag{3.2}$$

由(3.1), 在 Δ 中有子集 Δ_0 及 Δ_α, 使得

$$\mathfrak{u}^\mathfrak{e} = \mathfrak{h}^\mathfrak{e} + \sum_{\alpha \in \Delta_0} \mathfrak{g}_{\alpha}, \tag{3.3}$$

$$\mathfrak{t}^\mathfrak{e} = \mathfrak{h}^\mathfrak{e} + \sum_{\alpha \in \Delta_\alpha} \mathfrak{g}_{\alpha}. \tag{3.4}$$

进一步可以假设 \mathfrak{g}_α 为由(3.2) 得到的 $\mathfrak{g}^\mathfrak{e}$ 的酉限制, 即可取 $X_\alpha \in \mathfrak{g}_\alpha$, $\forall \alpha \in \Delta$, 使得

$$B(X_\alpha, X_{-\alpha}) = 1,$$

且 $\mathfrak{g}_\alpha = \sqrt{-1} \mathfrak{h}_\alpha + \sum_{\alpha \in \Delta} \mathbb{R}(X_\alpha + X_{-\alpha}) + \sum_{\alpha \in \Delta} \mathbb{R} \sqrt{-1} (X_\alpha - X_{-\alpha})$.

这推出

$$\tau(X_\alpha) = X_{-\alpha}, \quad \forall \alpha \in \Delta. \tag{3.5}$$

由于 $\tau(\mathfrak{u}^\mathfrak{e}) = \mathfrak{u}^\mathfrak{e}$, 特别, 可推出

$$\Delta_0 = -\Delta_0,$$

其中 $-\Delta_0$ 定义为 $\{-\alpha | \alpha \in \Delta_0\}$.

• 144 •
因为 $\mathfrak{h}^c \subset \mathfrak{i}^c$, $\theta (H) = H, \forall H \in \mathfrak{h}^c$, 所以 $[H, \theta (X_\alpha)] = \theta ([H, X_\alpha]) = \alpha (H) \theta (X_\alpha)$, 因此 $\theta (X_\alpha) \in \mathfrak{g}_\alpha$, 即 $\theta (\mathfrak{g}_\alpha) = \mathfrak{g}_\alpha$. 特别由于 $\dim \mathfrak{g}_\alpha = 1$, 所以 $\theta (X_\alpha) = \lambda_\alpha X_\alpha$. 但是 θ 为对合自同构, 即 $\theta^2 = \text{id}$. 所以 $\lambda_\alpha^2 = 1$, 即有 $\theta (X_\alpha) = \pm X_\alpha$.

另一方面, 已知 \mathfrak{i}^c 的非零向量由 θ 的特征值等于 1 的特征向量构成. 从 (3.4), 我们有

$$
(3.6) \quad \theta (X_\alpha) = \begin{cases}
X_\alpha, & \alpha \in \Delta_k, \\
-X_\alpha, & \alpha \notin \Delta_k.
\end{cases}
$$

由于 $\sigma = r \theta$, 由 (3.5), 我们有

$$
(3.7) \quad \sigma (X_\alpha) = \begin{cases}
X_{-\alpha}, & \alpha \in \Delta_k, \\
-X_{-\alpha}, & \alpha \notin \Delta_k.
\end{cases}
$$

另一方面, 因为 U 紧, 故存在 \mathfrak{g} 的子空间 \mathfrak{m}, 使得 \mathfrak{g} 有空间直接和

$$
(3.8) \quad \mathfrak{g} = \mathfrak{z} + \mathfrak{m},
$$

且

$$
(3.9) \quad [\mathfrak{z}, \mathfrak{m}] \subset \mathfrak{m}.
$$

注意, \mathfrak{m} 由条件 (3.8), (3.9) 唯一决定. 事实上, 由于 $\mathfrak{h}^c \subset \mathfrak{u}^c$, 且 $[\mathfrak{z}^c, \mathfrak{m}^c] \subset \mathfrak{m}^c$. 故 \mathfrak{m}^c 是一些 \mathfrak{g}_α 的直接和. 由 (3.5), 有

$$
(3.10) \quad \mathfrak{m}^c = \sum_{\alpha \in \Delta_k} \mathfrak{g}_\alpha.
$$

因此 \mathfrak{m}^c 唯一决定, 所以 $\mathfrak{m} = \mathfrak{m}^c \cap \mathfrak{g}$.

现在设常时间空间 G/U 上有 G 不变复结构 I. 于是 $\mathfrak{g}^c, \mathfrak{u}^c$ 必须适合一些条件. 下面来给出相应的必要且充分条件.

首先, 由第三章, 定理 3.2, 由 I 给出了 \mathfrak{g}^c 的分解

$$
(3.11) \quad \mathfrak{g}^c = \alpha + \sigma (\alpha), \quad \alpha \cap \sigma (\alpha) = \mathfrak{u}^c,
$$

其中 α 为 \mathfrak{g}^c 的复子代数. 反之, 上述分解决定了 G/U 上一个 G 不变复结构. 其次, 由于 $\mathfrak{h}^c \subset \mathfrak{u}^c \subset \mathfrak{a}$, 所以复子代数 α 是 \mathfrak{h}^c 及一些根子空间 \mathfrak{g}_α 的和. 由 (3.8), 存在 Δ 中子集 $\Delta_+ + \Delta_-$, 使得

$$
(3.12) \quad \Delta_+ \cap \Delta_0 = \phi,
$$

且
\[a = \bar{\alpha} + \sum_{\alpha \in A} g_\alpha. \]

因此，\(a \) 由 \(A \) 决定。

现在来求由复子代数 \(a \) 定义的对应 \(G/U \) 上 \(G \) 不变复结构的集合 \(A_+ \) 的定义条件。由 (3.7)，\(\sigma(g_\alpha) = g_{-\alpha} \)。于是从 \(a = \bar{\alpha} + \sum_{\alpha \in A} g_\alpha \) 推出

\[\sigma(a) = \bar{\alpha} + \sum_{\alpha \in A} g_{-\alpha}. \]

记

\[A_- = -A_+ = \{ -\alpha | \alpha \in A_+ \}. \]

由式 (3.11)，有

\[A = A_0 \cup A_+ \cup A_- \]

为两两不相交的集合之并。

现在定义

\[n^+ = \sum_{\alpha \in A_+} g_\alpha, \quad n^- = \sum_{\alpha \in A_-} g_\alpha. \]

于是

\[\bar{\alpha} = \bar{\alpha} + n^+ + n^-, \quad \sigma(a) = \bar{\alpha} + n^- . \]

下面证明

\[[\bar{\alpha}, n^+] \subset n^+, \quad [n^+, n^+] \subset n^+. \]

事实上，\([\bar{\alpha}, n^+] \subset n^+ \)。由式 (3.3) 及 \(n^+ \) 的定义，所以 (3.16) 等价于

\[\alpha \in A_0 \cup A_+, \beta \in A_+, \alpha + \beta \in A \] 则 \(\alpha + \beta \in A_+ \)。

现在来证明式 (3.17) 成立。设 \(m \) 为由式 (3.8)，(3.9) 定义的子空间，则 \(m^c = n^+ + n^- \)。由于 \([\bar{\alpha}, m^c] \subset m^c \) 及 \(a \) 为复子代数，于是 \([\bar{\alpha}, n^+] \subset m^c \cap a = n^+ \)。所以，如果 \(\alpha \in A_0, \beta \in A_+, \alpha + \beta \in A \)，则有 \(\alpha + \beta \in A_+ \)。现在取 \(\alpha, \beta \in A_+, \alpha + \beta \in A \)。由于 \(a \) 是子代数，所以 \(\alpha + \beta \in A_0 \cup A_+ \)。假设 \(\alpha + \beta \in A_0 \)，则 \(- (\alpha + \beta) \in A_0 \)。由刚才的证明，所以 \(- \alpha = - (\alpha + \beta) + \beta \in A_+ \)。因为 \(A_+ \cap A_- = \phi \)，这导出矛盾。所以证明了 (3.17)。故断言成立。

定理 3.1 设 \(G \) 是连通实半群 Lie 群，设 \(G \) 的中心由单位元素构成。设 \(U \) 为连通紧 Lie 群，它是环面子群 \(S \) 的中心化子
\(g(S)\). 记 \(g\) 为 \(G\) 的 Lie 代数，\(g^c\) 为 \(g\) 的复化。记 \(g^c\) 的附属群为 \(G^c\)。视 \(G\) 为 \(G^c\) 的子群。记 \(g_u\) 为 \(g^c\) 的紧实形式，使 \(G_u\) 为 \(G^c\) 中 \(g_u\) 所对应的子群，使得 \(G_u\cap G\) 是 \(G\) 的极大紧子群，且包含 \(U\)。记 \(\bar{u}\) 为 \(U\) 的 Lie 代数，\(h\) 为 \(g\) 的 Cartan 子代数，且 \(h\subset \bar{u}\)。记 \(\Delta\) 为 \(g^c\) 关于 \(h^c\) 的根系，\(\Delta_0\) 为 \(\Delta\) 中由式 (3.3) 所定义的子集合，则在下面事物之间存在一一对应关系：

1) \(G/U\) 上 \(G\) 不变复结构；
2) \(G_u/U\) 上 \(G_u\) 不变复结构；
3) 适合 (3.14)，(3.17) 的两两不相交子集合分解

\[\Delta = \Delta_0 \cup \Delta_+ \cup \Delta_-\]

且 \(G/U\) 上必存在 \(G\) 不变复结构。

证 显然 \(G/U\) 上的 \(G\) 不变复结构一一对应于 \(g^c\) 的复子代数

\[(3.11)\]

\[g^c = a + \sigma(a), \quad a \cap \sigma(a) = \bar{u}^c.\]

同理，\(G_u/U\) 上的 \(G_u\) 不变复结构一一对应于 \(g^c\) 的复子代数 \(b\)，使得

\[(3.11)'\]

\[g^c = b + \tau(b), \quad b \cap \tau(b) = \bar{u}^c.\]

由于 \(a\) 有根子空间分解式

\[(3.18)\]

\[a = \bar{u}^c + \sum_{a \in \Delta} g_a.\]

由 (3.6)，\(\theta(a) = a\)，\(\theta(\bar{u}^c) = \bar{u}^c\)。然而 \(\theta \sigma = \tau\)。将 \(\theta\) 作用于 (3.11)，有 \(g^c = a + \tau(a), \quad a \cap \tau(a) = \bar{u}^c\)，则 \(a\) 适合 (3.11)'。反之，将 \(\theta\) 作用于 (3.11)', 可证 \(b\) 适合 (3.11)。所以我们给出了 \(G/U\) 的 \(G\) 不变复结构和 \(G_u/U\) 的 \(G_u\) 不变复结构间的一一一对应关系。

前面已经证明了适合条件 (3.11) 的复子代数 \(a\) 定义了适合 (3.14)，(3.17) 的分解式 \(\Delta = \Delta_0 \cup \Delta_+ \cup \Delta_-\)。反之，任给一个适合 (3.14)，(3.17) 的分解式 \(\Delta = \Delta_0 \cup \Delta_+ \cup \Delta_-\)，引进子空间

\[a = \bar{u}^c + \sum_{a \in \Delta} g_a,\]

则可证 \(a\) 是适合条件 (3.11) 的子代数。至此证明了 1)，2)，3) 间的一一一对应关系。

最后证明 \(\Delta\) 的适合条件 (3.14)，(3.17) 的分解的存在性。今
所为闭子群，即存在 $W \in g$，使 S 为 $\{\exp tW | t \in \mathbb{R}\}$ 的闭包。由于 $S \subset T$，所以 $W \in h$。已知 $h \subset g$，于是 W 的特征根纯虚。对这个 W，显然 $\alpha \in A_0$ 当且仅当 $\alpha(W) = 0$。记 $H = \sqrt{-1}W$，令

$$A_+ = \{\alpha \in A | \alpha(H) > 0\},$$

及 $A_- = -A_+$，则可证 $A = A_0 \cup A_+ \cup A_-$ 是 A 的一个适合条件 (3.14)、(3.17) 的分解，且两两之交为空集。这证明了分解的存在性，定理证完。

下面引理证明，A 的适合条件 (3.14)、(3.17) 的分解可以由 V_n 中元素 H 按照上面证明分解存在性的办法得到。

引理 3.1 设 A 为实线性空间 V 中的根系，设根系 A 有分解

$$A = A_0 \cup A_+ \cup A_-,$$

使它们两两之交为空集，且

$$-A_0 = A_0, \quad -A_+ = A_-.$$

且若 $\alpha \in A_0 \cup A_+$，$\beta \in A_+$，$\alpha + \beta \in A$，则 $\alpha + \beta \in A_+$. 则元素

$$s = \sum_{\alpha \in A} \alpha$$

适合条件

$$\langle s, \alpha \rangle = \begin{cases} 0, & \alpha \in A_0; \\ > 0, & \alpha \in A_+; \\ < 0, & \alpha \in A_-; \end{cases}$$

而且在 A 中存在素根系 π，使得若 $\pi_0 = \pi \cap A_0$，则

$$A_0 = [\pi_0],$$

且 $A_+ \subset A^+$，其中 A^+ 为所有正根构成的集合。

证 设 $\gamma \in A_0 \cup A_+$. 假设 $\beta \in A_+$，使得 $\beta + \gamma \notin A$，$\beta - (p + 1) \gamma \notin A$，但是

$$\beta - p \gamma, \ldots, \beta - \gamma, \beta$$

在 A 中。如果 $\beta \neq \pm \gamma$，则 $p = \frac{2\langle \beta, \gamma \rangle}{\langle \gamma, \gamma \rangle}$.

设 $\beta - q \gamma \in A_+$，但是 $\beta - (q + 1) \gamma \in A_+$. 由引理的假设，可知 $\beta - (q - 1) \gamma, \ldots, \beta - \gamma, \beta$ 属于 A_+. 令

$$s_\beta = \sum_{\gamma \in A_+} \langle \beta - i \gamma \rangle = (q + 1) \beta - \frac{q(q + 1)}{2} \gamma,$$
\[
\langle s_{\beta}, \gamma \rangle = (q+1) \langle \beta, \gamma \rangle - \frac{q(q+1)}{2} \langle \gamma, \gamma \rangle
\]
\[
= \frac{q+1}{2} \langle \gamma, \gamma \rangle \left\{ \frac{2\langle \beta, \gamma \rangle}{\langle \gamma, \gamma \rangle} - q \right\}
\]
\[
= \frac{q+1}{2} \langle \gamma, \gamma \rangle (p-q) \geq 0.
\]

设 \(\beta \) 和 \(\gamma \) 线性相关，即 \(\beta = \gamma \) 或 \(\beta = -\gamma \)。如果 \(\beta = -\gamma \)，\(\beta \) 及
\(\beta \) 都属于 \(A_0 \cup A_+ \)，所以 \(\beta \in A_0 \)，这导出矛盾，因此 \(\beta = \gamma \)。所
以，如果 \(\gamma \in A_+ \)，则
\[
\sum_{\alpha \in A_+} \langle \alpha, \gamma \rangle = \sum_{\beta \in A_+} \langle s_{\beta}, \gamma \rangle + \langle \gamma, \gamma \rangle > 0.
\]
取 \(s = \sum_{\alpha \in A_+} \langle \alpha, \gamma \rangle \)，则 \(\langle s, \gamma \rangle > 0 \)，\(\forall \gamma \in A_+ \)。如果 \(\gamma \in A_0 \)，则 \(p = q, \beta = \gamma \)。
所以
\[
\langle s, \gamma \rangle = \sum_{\alpha \in A_+} \langle \alpha, \gamma \rangle = \sum_{\beta} \langle s_{\beta}, \gamma \rangle = 0.
\]

为了证第二部分。取 \(v_1, v_2, \cdots, v_i \) 是 \(V \) 的一组基，使得 \(v_i = s \)。如果 \((\lambda-\mu, v_i) = \cdots = (\lambda-\mu, v_{i-1}) = 0, (\lambda-\mu, v_i) > 0 \)，这里 \(i \) 为一个固定指标，取 \(1, 2, \cdots, l \) 之一，则按照这样引进的序，在 \(V \)
中能给出素根系 \(\pi \)，使得正根系 \(A^+ \) 包含 \(A_+ \)，取 \(I = A_0 \cup A_+ \)。则 \(I \)
是包含在正根系 \(A^+ \) 中的闭根系。所以，取 \(\pi_0 = \pi \cap A_0 \)，则 \(\pi_0 = \{ \alpha \in \pi | -\alpha \in I \} \)，且由第四章，引理 2.2，\(I = A_0 \cup [\pi_0] \)。由于 \(A_0 \) 为
闭根系，这推出 \(A_0 = \overline{\pi_0} \)。引理证完。

定理 3.2 设 \(G_u \) 及 \(U \) 适合定理 3.1 的假设，则具有 \(G \) 不变
复结构的旁集空间 \(G_u/U \) 是 \(D \) 空间。

证 对 \(g_u \) 的复化 \(\mathfrak{g}, \mathfrak{g}^c \) 的附属群为 \(G^c \)。无妨设 \(G_u \subset G^c \)。在
\(G_u/U \) 上给定 \(G_u \) 不变复结构。此复结构对应 \(A \) 的分解 \(A = A_0 \cup
A_+ \cup A_- \) (由定理 3.1)。设 \(\pi \) 为素根系，使得 \(A_+ \) 包含于关于 \(\pi \) 的正
根系中。令
\[
\varphi = d^c + n^c, \quad n^c = \sum_{\alpha \in A_0} g_\alpha,
\]
则 \(\varphi \) 包含 Borel 子代数 \(d^c + \sum_{\alpha < 0} g_\alpha \)。所以 \(\varphi \) 为抛物子代数，它对
应 \(G^c \) 中抛物子群 \(P \)。由于 \(\varphi \cap g_u = \hat{d} \)，于是有 \(U = (P \cap G_u)^0 \)。
今 P 为 G^c 中对应于 v 的子群，于是有 D 空间 G^c/P。下面证 G_u/U 和 G^c/P 全同构，事实上，由于 $g^c = g_u + v$，而 g_u 在 D 空间 G^c/P 上原点 $0 = eP$ 的轨道又开又闭，所以等于整个空间。于是有覆盖映射

$$
\varphi: G_u/U \rightarrow G^c/P.
$$

由第四章定理 3.1，G^c/P 是单连通的，故 φ 是到上的微分同构。余下证 φ 全纯。由于 $d\varphi_0 \circ I_0 = \sqrt{-1}d\varphi_0$，又由于 G_u/U 及 G^c/P 上复结构是 G^u 不变的，所以 φ 处处全纯。因此 G_u/U 和 G^c/P 全同构。这证明了 G_u/U 可以看作是 D 空间 G^c/P。定理证完。

下面定理是第四章定理 4.5 的逆定理。

定理 8.3 (王宪钟) 设 G_u 为连通紧半单 Lie 群，U_1 是 G 子群，又 $\dim G_u/U_1$ 为偶数，则 G_u/U_1 有 G_u 不变复结构。

确切地说，设 S 为环面，使得

$$
C(s)' = U_1' \subset U_1 \subset C(s)
$$

（见第四章，引理 4.2）。取 $U = C(s)$，给定 G_u/U 上 G_u 不变复结构 I_1 及 U/U_1 上 U 不变复结构 I_2，则在 G_u/U_1 上存在 G_u 不变复结构 I'，使得射影 $\pi: G_u/U_1 \rightarrow G_u/U$ 及内射 $\iota: U/U_1 \rightarrow G_u/U_1$ 都是全纯的。

证 首先注意，在定理的假设下，U/U_1 是偶维交换 Lie 群，所以有一个 U 不变复结构。因此第二个断言可以推出第一个断言。

我们用这一节前面引进的各种符号，而不加以说明，从 G_u/U 上的 G_u 不变复结构 I_1，可导出分解式 $4 = 4_0 \cup 4_+ \cup 4_-$，以及复子代数

$$
\mathfrak{a} = \mathfrak{u}^c + \sum_{\alpha \in \mathfrak{d}_1} \mathfrak{g}_\alpha,
$$

使得 $g^c = a + \tau(a)$，$a \cap \tau(a) = \mathfrak{u}^c$。

从 U/U_1 上的 U 不变复结构 I_2，可导出复子代数

$$
\mathfrak{u}^c = b + \tau(b)，b \cap \tau(b) = \mathfrak{u}^c_1,
$$

其中 $\mathfrak{u}^c_1 = \mathfrak{Lie} U_1$。由于 $b \supset \mathfrak{u}^c_1 \supset [\mathfrak{u}^c, \mathfrak{u}^c] \supset \sum \mathfrak{g}_\alpha$，故在 \mathfrak{g}^c 中存在复子空间 \mathfrak{h}_1，使得

\[.150.\]
\[b = b_f + \sum_{a \in d_\nu} g_a. \]

现在，取
\[a_1 = b + \sum_{a \in d_\nu} g_a = b_f + \sum_{a \in d_\nu \cup d_\nu} g_a. \]

则 \(a_1 \) 是复子代数，使得
\[g^c = a_1 + \tau(a_1), \quad a_1 \cap \tau(a_1) = \tilde{u}_f^c. \]

因此，\(a_1 \) 定义了 \(G_u / U_1 \) 上的 \(G_u \) 不变复结构。由自然映射 \(g^c / \tilde{u}_f^c \rightarrow g^c / \tilde{u}_c \)，可知 \(a_1 / \tilde{u}_c \) 映到 \(a / \tilde{u}_c \) 上。由内射 \(\tilde{u}_c / \tilde{u}_f^c \rightarrow g^c / \tilde{u}_c \)，则 \(b / \tilde{u}_c \)
映入 \(a_1 / \tilde{u}_c \)。这推出自然映射 \(G / U_1 \rightarrow G / U \) 及内射 \(\iota : U / U_1 \rightarrow G / U_1 \)
都是全纯的。定理证完。

§4 半单 Lie 群的旁集空间上的不变 Kaehler 结构

设 \(G \) 为连通实半单 Lie 群，\(U = O(S) \) 是连通紧 Lie 群，其中 \(S \) 为环面。下面给出在旁集空间 \(G / U \) 上存在 \(G \) 不变 Kaehler 度量的必要且充分条件，这个必要且充分条件是关于 \(G \) 的 Lie 代数 \(g \) 所适合的条件。

首先，由 §3 可知，\(G / U \) 上有 \(G \) 不变复结构的必要且充分条件为存在 Lie 代数 \(g \) 的根系 \(\Delta \) 的一种两不相交子集合的分解
\[\Delta = \Delta_0 \cup \Delta_+ \cup \Delta_. \]
使得它适合条件
\[\Delta_+ = - \Delta_; \]
(4.3) \(a \in \Delta_0 \cup \Delta_+, \beta \in \Delta_+, a + \beta \in \Delta, \) 则 \(a + \beta \in \Delta_+ \).

（详细讨论见定理 3.1.）

其次，由定理 1.2 及引理 2.1 可知，\(G / U \) 上有 \(G \) 不变辛形式 \(\Omega \) 当且仅当对自然映射 \(\pi : G \rightarrow G / U \)，记 \(F = \pi^* \Omega \)，则 \(F \) 为 \(g \) 上实斜对称双线性形式，它适合条件
\[F(X, Y) = 0, \quad \forall X \in g \] 当且仅当 \(X \in \tilde{u}, \]
(4.4) \[F([X, Y], Z) + F([Y, Z], X) + F([Z, X], Y) = 0, \quad \forall X, Y, Z \in g. \]

• 151 •
而且存在元素 \(W \in \mathfrak{h} \)，使得 \(\tilde{u} = C(W) \),

\[
F(X, Y) = B(W, [X, Y]), \quad \forall X, Y \in \mathfrak{g},
\]

其中 \(B \) 为 \(\mathfrak{g} \) 的 Killing 型.

上面是 \(G/U, U = C(S) \) 有 \(G \) 不变复结构 \(I \) 及 \(G \) 不变辛形式 \(\Omega \)，从而导出 \(G \) 的 Lie 代数所必须适合的必要且充分条件。在这个基础上，在下面给出 \(G/U, U = C(S) \) 有 \(G \) 不变 Hermite 度量 \(g \)，使得由 \(g \) 给出的 Kaehler 形式就是 \(G \) 不变辛形式 \(\Omega \) 的必要且充分条件。因为已知辛形式有 \(d\Omega \)，所以由此可得出 \(G/U \) 的 \(G \) 不变 Hermite 度量 \(g \) 必然为 \(G \) 不变 Kaehler 度量，所以求出这个必要且充分条件就解决了本节一开始提出的问题。

今对辛形式 \(\Omega \)，由 \(\Omega \) 定义

\[
g_x(u, v) = \Omega(u, Iv), \quad \forall u, v \in T_x(G/U),
\]

对一切 \(x \in G/U \)，则 \(g \) 为 \(G/U \) 上 \(G \) 不变 Hermite 度量，使 \(g \) 的 Kaehler 形式就是 \(\Omega \)。反之，若 \(g \) 为 \(G/U \) 的 \(g \) 不变 Hermite 度量，使其 Kaehler 形式就是 \(\Omega \)，则必有关系（4.7）。

下面将 \(g \) 为 Hermite 度量的条件转移到 Lie 代数 \(\mathfrak{g} \) 中。为此记 \(G \) 不变复结构 \(I \) 决定的 \(\mathfrak{g} \) 的 Koszul 算子为 \(J \)，则由（4.6）定义的 \(F \)，有

\[
(x^*g)(X, Y) = F(X, JY), \quad \forall X, Y \in \mathfrak{g}.
\]

所以 \(g \) 是 \(G/U \) 的 Hermite 度量当且仅当下面两个条件适合

\[
F(JX, Y) + F(X, JY) = 0, \quad \forall X, Y \in \mathfrak{g},
\]

\[
F(X, JX) \geq 0, \quad \text{等号成立当且仅当} \ X \in \tilde{u}.
\]

现在来证明

引理 4.1 设 \(G/U \) 有 \(G \) 不变复结构，它由分解式 \(\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_* \cup \mathcal{A}_* \) 所定义，则 \(G/U \) 有 \(G \) 不变 Kaehler 度量当且仅当存在元素 \(H \in \mathfrak{h}_\mathbb{R} \)，其中 \(\mathfrak{h}_\mathbb{R} \) 为 \(\mathfrak{g}^* \) 中 \(\mathcal{A} \) 实线性生成的子空间，使得

\[
\alpha(H) = \begin{cases}
0, & \alpha \in \mathcal{A}_0; \\
> 0, & \alpha \in \mathcal{A}_+ \cap \mathfrak{h}_\mathbb{R}; \\
< 0, & \alpha \in \mathcal{A}_+ \setminus \mathcal{A}_*.
\end{cases}
\]

证 为了给出引理 4.1，将式（4.6）定义的 \(F \) 加以复化，即将
F 扩充为 g^c 上的复双线性函数，然后，再将与 F 有关的条件 (4.4), (4.5), (4.8), (4.9) 在 g^c 上写出来，为此利用 g^c 的关于 Cartan 子代数 h^c 的根子空间分解

$$g^c = h^c + \sum_{a \in d} g_a,$$

$$\bar{g}^c = h^c + \sum_{\bar{a} \in \bar{d}} g_a.$$

今 G/U 的 G 不变复结构 I 定义了分解

$$g^c = a + \bar{a}, \quad a \cap \bar{a} = \bar{g}^c,$$

这里""表示 g^c 关于 g 的共轭 σ。已知

$$a = u^c + n^+, \quad n^+ = \sum_{a \in d} g_a,$$

$$\bar{a} = \bar{u}^c + n^+, \quad n^- = \sum_{\bar{a} \in \bar{d}} g_a.$$

而

$$n^+ = m^c \cap a, \quad n^- = m^c \cap \bar{a}.$$

将 g 上实线性变换自然地扩充为 g^c 上复线性变换，记作 J^c。于是

$$J^c|_{n^+} = \sqrt{-1} i d_{n^+}, \quad J^c|_{n^-} = -\sqrt{-1} i d_{n^-}, \quad J^c|_{\bar{g}^c} = 0.$$

所以

$$J^c X_a = \begin{cases} 0, & \alpha \in A_0; \\ \sqrt{-1} X_{\alpha}, & \alpha \in A_+; \\ -\sqrt{-1} X_{\bar{\alpha}}, & \alpha \in A_. \end{cases} \tag{4.11}$$

另一方面，记 B 为复半单 Lie 代数 g^c 的 Killing 型。定义 g^c 上的复斜对称双线性形式

$$(4.6)' \quad F(X, Y) = B(W, [X, Y]).$$

它限制在 g 上即为(4.6) 式。所以现在定义的 F 是 (4.6) 式定义的实斜对称双线性形式 F 的复扩充。

由于 $[X_\alpha, X_{-\alpha}] = H_\alpha$，所以 $B(W, [X_\alpha, X_{-\alpha}])$ 为 $B(W, H_\alpha) = \alpha(W)$，又由于 $[X_\alpha, X_\beta] = N_{\alpha \beta} X_{\alpha + \beta}$，$\alpha + \beta \neq 0$。所以 $B(W, [X_\alpha, X_\beta]) = 0$。于是有

$$F(X_\alpha, X_\beta) = B(W, [X_\alpha, X_\beta]) = \begin{cases} 0, & \text{当 } \alpha + \beta \neq 0; \\ \alpha(W), & \text{当 } \beta = -\alpha, \end{cases} \tag{4.12}$$

且有 $F(h^c, g^c) = 0$。所以式 (4.4), (4.5) 自动适合。余下要讨论
条件 (4.8), (4.9). 今由 (4.11) 及 (4.12),

\[
F(J^cX_\alpha, X_\beta) = \begin{cases}
0, & \alpha \in \Delta_0; \\
\sqrt{-1}F(X_\alpha, X_\beta), & \alpha \in \Delta_+; \\
-\sqrt{-1}F(X_\alpha, X_\beta), & \alpha \in \Delta_-.
\end{cases}
\]

\[
= \begin{cases}
0, & \alpha + \beta \neq 0 \text{ 或 } \alpha + \beta = 0, \alpha \in \Delta_0; \\
\sqrt{-1}\alpha(W), & \alpha = -\beta \in \Delta_+; \\
-\sqrt{-1}\alpha(W), & \alpha = -\beta \in \Delta_-.
\end{cases}
\]

\[
= \begin{cases}
0, & \beta + \alpha \neq 0 \text{ 或 } \beta + \alpha = 0, \beta \in \Delta_0; \\
-\sqrt{-1}\beta(W), & \beta = -\alpha \in \Delta_+; \\
\sqrt{-1}\beta(W), & \beta = -\alpha \in \Delta_-.
\end{cases}
\]

再由 $\mathfrak{h}^c = \mathfrak{g}^c$, 所以 $F(\mathfrak{g}^c, \mathfrak{h}^c) = 0$. 所以证明了

(4.18) \quad F(J^cX, X) + F(X, J^cY) = 0, \quad \forall X, Y \in \mathfrak{g}^c.

再由

\[
F(X, JX) = \frac{1}{2\sqrt{-1}} F(X - \sqrt{-1}JX, X + \sqrt{-1}JX),
\]

\[\forall X \in \mathfrak{g},\]

其中 $X - \sqrt{-1}JX \in \mathfrak{a}, \forall X \in \mathfrak{g}$. 所以为了证明 $F(X, JX) \geq 0$, 只要证

\[\frac{1}{\sqrt{-1}} F(X, \overline{X}) \geq 0, \quad \forall X \in \mathfrak{a}\]

即可. 已知 $F(\mathfrak{g}^c, \mathfrak{g}^c) = 0$, 所以问题化为求证

(4.14) \quad \frac{1}{\sqrt{-1}} F(X, \overline{X}) > 0, \quad \forall 0 \neq X \in \mathfrak{n}^+.

今由 (3.9), 有

\[154\]
$$X_{\alpha} = \begin{cases} X_{-\alpha}, & \alpha \in A_d; \\ -X_{-\alpha}, & \alpha \in A_w. \end{cases}$$

所以，取
$$X = \sum_{\alpha \in \Delta^d} c_{\alpha} X_{\alpha} \in \mathbb{N}^+,$$

其中 $c_{\alpha} \in \mathbb{C}$，则由 (4.12)，有
$$\frac{1}{\sqrt{-1}} F(X, \bar{X}) = \sum_{\alpha \in \Delta^d} |c_{\alpha}|^2 \alpha(W) - \sum_{\alpha \in \Delta^d \setminus \Delta^w} |c_{\alpha}|^2 \alpha(W).$$

其中 $H = -\sqrt{-1}W$，于是 $\frac{1}{\sqrt{-1}} F(X, \bar{X}) > 0, \forall 0 \neq X \in \mathbb{N}^+$

当且仅当 $H = -\sqrt{-1}W$ 有
$$\alpha(H) > 0, \forall \alpha \in \Delta^d \cap \Delta^w,$$
$$\alpha(H) < 0, \forall \alpha \in \Delta^d, \alpha \notin \Delta^w.$$

注意 $\check{u} = C(W)$ 蕴含 $\alpha(H) = 0, \forall \alpha \in \Delta^w$。

反之，若 H 适合上面三个条件，则 $W = \sqrt{-1}H$，使得 $\check{u} = C(W)$，这就证明了引理。

定理 4.1 设 G 为连通半单 Lie 群，$U = G(S)$ 是环面子群 S 的中心化子。则对 G/U 上任意一 G 不变结构 \mathbb{P}，存在 G 不变 Kaehler 度量，使它的 Kaehler 形式为 (4.6) 定义的 F 所诱导，其中定义 F 的元素 W 有 $\alpha(-\sqrt{-1}W) = 0, \forall \alpha \in \Delta^d; \alpha(-\sqrt{-1}W) > 0, \forall \alpha \in \Delta^w$。

证 今 G 紧，所以 $A = \Delta^d$，取 $s = \sum_{\alpha \in \Delta^d} a_{\alpha}$，取 $H_s \in \mathfrak{g}_0^*$，使得 $\lambda(H_s) = \langle \lambda, s \rangle, \forall \lambda \in \mathfrak{g}_0^*$. 由引理 3.1，有
$$\alpha(H_s) \begin{cases} = 0, & \alpha \in \Delta^d; \\ > 0, & \alpha \in \Delta^w. \end{cases}$$

由引理 4.1，便证明了定理。

下面考虑非紧的情形，我们有

定理 4.2 设 G 是连通非紧半单 Lie 群，其中心由单位元组成，$U = G(S)$ 是连通紧子群，是环面子群 S 的中心化子。设 K
为 G 中包含 U 的最大子群，则 G/U 有 G 不变 Kaehler 度量当且仅当 G/K 有 G 不变复结构，使得自然映射 $\pi : G/U \rightarrow G/K$ 是全纯映射。而且，这时 G/K 为 Hermite 对称旁集空间，K/U 为 G/U 的紧复子流形。

证明 我们不加说明地使用定理 3.1 中引进的各种符号。设 G 的不变复结构定义分解

$$
\Delta = \Delta_0 \cup \Delta_+ \cup \Delta_-
$$

由于 $\Delta_0 \subseteq \Delta_+$，我们取

$$
\begin{aligned}
\Gamma_+ &= \{ \alpha \in \Delta_+ | \alpha \notin \Delta_0 \}, \\
\Gamma_- &= \{ \alpha \in \Delta_- | \alpha \notin \Delta_0 \},
\end{aligned}
$$

则

$$
\Delta = \Delta_0 \cup \Gamma_+ \cup \Gamma_-
$$

是根系 Δ 的两两不相交的子集合的分解。令

$$
g = \mathfrak{t} + \mathfrak{p}
$$

是 g 的 Cartan 分解，于是

$$
\mathfrak{p}^c = \sum_{\alpha \in \Gamma_+ \cup \Gamma_-} g_{\alpha}.
$$

假设 G/U 有 G 不变 Kaehler 度量，下面证明分解式 (4.16) 给出了 G/K 有 G 不变复结构。事实上，由于 $\Delta_- = -\Delta_+$，所以 $\Gamma_- = -\Gamma_+$. 余下要证明

$$
\alpha \in \Delta_0 \cup \Gamma_+，\beta \in \Gamma_+，\alpha + \beta \in \Delta，\text{则 } \alpha + \beta \in \Gamma_+.
$$

今 $\alpha \in \Delta_0，\beta \in \Gamma_+，\alpha + \beta \in \Delta$，由于 $[\mathfrak{t}^c，\mathfrak{p}^c] \subset \mathfrak{p}^c$，所以 $[g_{\alpha}，g_{\beta}] \subset \mathfrak{p}^c$，即 $\alpha + \beta \in \Delta$，$\alpha + \beta \in \Delta_0$，于是 $\alpha + \beta \in \Gamma_+ \cup \Gamma_-$. 如果 $\alpha + \beta \in \Gamma_-$，则 $\alpha + \beta \in \Delta$，$\alpha + \beta \in \Delta_0$。所以 $(\alpha + \beta)(H) = \alpha(H) + \beta(H) > 0$. 但是 $\beta \in \Gamma_+$，所以 $\beta(H) < 0$. 于是 $\alpha(H) > 0$. 由 (4.10)，所以 $\alpha \in \Delta_+ \cup \Delta_0$，于是 $\alpha，\beta \in \Delta_+$，即 $\alpha + \beta \in \Delta_+$. 这导出矛盾，所以证明了 $\alpha + \beta \in \Gamma_+$. 再 $\alpha \in \Gamma_+，\beta \in \Gamma_+$ 则 $\alpha，\beta \in \Delta_+，\alpha，\beta \in \Delta_0$. 由 $\alpha + \beta \in \Delta$，所以 $\alpha + \beta \in \Delta_0$。若 $\alpha + \beta \in \Gamma_+$，则 $\alpha + \beta \in \Delta_0$. 由 (4.10)，有 $(\alpha + \beta)(H) > 0$. 另一方面，由 $\alpha，\beta \in \Gamma_+$，所以 $\alpha(H) < 0$，$\beta(H) < 0$. 这又导出矛盾，所以 $\alpha + \beta \in \Gamma_+$. 至此证明
了分解式 $\Delta = \Delta_+ \cup \Gamma_+ \cup \Gamma_-$ 定义了 G/K 上一个 G 不变复结构。

由这个 G 不变复结构定义了 g^e 的一个复子代数 b。它可写成

$$ b = t^e + \sum_{a \in \Lambda} g_a. $$

而 $g^e = b + \overline{b}$, $b \cap \overline{b} = t^e$. 这时, G/K 显然为 Hermite 对称旁集空间.

今 G/U 的 G 不变复结构定义了 g^e 的复子代数 a, 则

$$ a = t^e + \sum_{a \in \Lambda} g_a \supset b. $$

这证明了自然映射 $G/U \to G/K$ 是全纯的.

子代数 $a_1 = a \cap t^e$ 定义了 K/U 上的 K 不变复结构，使得 K/U 是 G/U 的紧复子流形.

反之，设 G/K 上存在 G 不变复结构，使得自然映射 $\pi: G/U \to G/K$ 是全纯的。则由式 (4.17) 的复子代数 b, 其中 $\Delta_+ \supset \Gamma_+$. 定义的复结构，导出分解式 $\Delta = \Delta_+ \cup \Gamma_+ \cup \Gamma_-$. 将引理 4.1 用于这个分解式，便求得 $H_1 \in \mathfrak{h}_2$, 使得

$$ \begin{cases} = 0, & a \in \Delta_2; \\ \alpha(H_1) > 0, & a \in \Gamma_+; \\ < 0, & a \in \Gamma_. \end{cases} $$

另一方面，由引理 3.1，我们得到 $H_2 \in \mathfrak{h}_1$, 使得

$$ \begin{cases} = 0, & a \in \Delta_0; \\ \alpha(H_2) > 0, & a \in \Delta_+; \\ < 0, & a \in \Delta_. \end{cases} $$

取 $c > 0$ 充分大，令 $H = H_2 - cH_1$, 则我们有

$$ \begin{cases} = 0, & a \in \Delta_0; \\ \alpha(H) > 0, & a \in \Delta_0 \cap \Delta_+; \\ < 0, & a \in \Gamma_. \end{cases} $$

由引理 4.1，所以 G/U 允许一个 G 不变 Kaehler 度量。这就证明了定理。

推论 设 D 为 \mathbb{C}^n 中有界域。如果存在连通实半单 Lie 群 G
在 \(D \) 上作用可逆且有效，且 \(G \) 中元为 \(D \) 上全纯同构。则 \(D \) 作为复流形，全纯同构于 Hermite 对称旁集空间。

证 由假设，作为 \(C^\infty \) 流形，我们不妨设 \(D=G/U \)，其中 \(G \) 为连通实半单 Lie 群，\(U \) 为 \(G \) 中紧子群。由于 \(D \) 上复结构及 Bergman 度量，定义了 \(G/U \) 上 \(G \) 不变 Kaehler 度量。应用定理 4.2，\(D \) 中有连通紧复子流形 \(K/U \)，所以 \(K/U \) 为 \(C^\infty \) 中连通紧复子流形。因此 \(C^\infty \) 的坐标函数在 \(K/U \) 上必须为常数，所以 \(K/U \) 为一个点，即 \(K=U \)。因为单独子群 \(U \) 为 \(G \) 中最大紧子群 \(K \)，这就证明了推论。

注记 E. Cartan 在 1935 年提出了一个著名的猜想：如果 \(C^\infty \)中有界域 \(D \) 在全纯自同构构成的连通实 Lie 群 \(G \) 上作用可逆，则 \(D \) 为对称有界域，”这里对称有界域 \(D \) 定义为这样的有界域，使得对 \(D \) 中每一点 \(x \)，存在 \(D \) 的全纯自同构 \(\sigma_x \) 使得 \(\sigma_x \) 以 \(x \) 为孤立不动点，且 \(\sigma_x^2=i\eta_D \)。Koszul 及 Borel 独立地在 \(G \) 为半单 Lie 群情形，证明了这个猜想是正确的。后来，J. Hano 在 \(G \) 为半模 Lie 群的情形，也证明了这个猜想是正确的*。但是，Pjateckii-Shapiro 在一般情形，否定了这个猜想。

最后，我们给出紧群性 Kaehler 流形的结构定理。

定理 4.3 设 \(M \) 是一个紧群性 Kaehler 流形，则 \(M \) 分解为紧群性 Kaehler 流形的拓扑积

\[
M = T \times G_1/U_1 \times \cdots \times G_m/U_m,
\]

其中 \(T \) 为复环面，它具有一个 \(T \) 不变 Kaehler 度量，又 \(G_i/U_i \) 是连通紧群 \(G_i \) 模紧子群 \(U_i \) 构成的紧 Kaehler 旁集空间，使得 \(U_i \) 为 \(G_i \) 中环面群 \(S_i \) 的中心化子。而且，\(G_i \) 的中心由单位元素构成，\(G_i/U_i \) 单连通，\(i = 1, 2, \cdots, m \)。

证 由于 \(M \) 紧，所以 \(M \) 可表为 Kaehler 旁集空间 \(G/U \)，其中 \(G \) 为紧连通 Lie 群。由定理 3.2，\(M \) 可分解为 Kaehler 流形的拓扑积，\(M = T \times G'/U \)，其中 \(T \) 为复环面，\(G' \) 为紧半单 Lie 群，使

... 158 ...
得 G' 的中心由单位元素构成，又 G'/U 单连通。
于是为了证明定理，不妨假设 G 为连通紧半单 Lie 群，使得 G
的中心只由单位元素构成，这时要证明
\[(4.19) \quad G/U = G_1/U_1 \times \cdots \times G_m/U_m,\]
其中 G_i/U_i 之条件见定理之叙述。
设紧半单 Lie 代数 g 分解为紧单理想直接和
\[g = g_1 \oplus \cdots \oplus g_m,\]
记 G_i 为 G 中对应理想 g_i 的连通紧单 Lie 群。由于 G 的中心由单
位元素构成，所以 G_i 的中心也由单位元素构成，且有直乘积
\[G = G_1 \times \cdots \times G_m.\]
记 $\mathfrak{u} = \text{Lie } U$。于是存在 $W \in g$，使 $\mathfrak{u} = \mathfrak{C}(W)$，$W = W_1 + \cdots + W_m$，
$W_i \in g_i$。记 $\mathfrak{C}_i(W_i) = \mathfrak{u}_i$，则 \mathfrak{u} 分解为理想直接和
\[\mathfrak{u} = \mathfrak{u}_1 + \cdots + \mathfrak{u}_m.\]
在 G_i 中对应于 \mathfrak{u}_i 的子群记作 U_i，则 U_1 是 G_i 中环面子群 S_i 的中
心化子，且 U 有下面直乘积分解:
\[U = U_1 \times \cdots \times U_m.\]

今旁集空间 G_i/U_i 是 C^∞ 流形，它单连通。下面证 G_i/U_i 为 G
不变 Kaehler 旁集空间。

在 g 中取 Cartan 子代数 $\mathfrak{h} \ni W$。记 $\mathfrak{h} \cap g_i = \mathfrak{h}_i$，自
然有理想直接和分解
\[\mathfrak{h} = \mathfrak{h}_1 + \cdots + \mathfrak{h}_m.\]
所以 $\mathfrak{g}^\mathfrak{e}$ 关于 $\mathfrak{h}^\mathfrak{e}$ 的根系 Δ 能分解为两两不相交的子集合的并
\[\Delta = \Delta_1 \cup \cdots \cup \Delta_m.\]
使得
\[\mathfrak{g}^\mathfrak{e} = \mathfrak{h}^\mathfrak{e} + \sum_{\alpha \in \Delta_i} \mathfrak{g}_\alpha.\]
由式 (4.11) 可知 $J^\mathfrak{e} g_i \subset \mathfrak{g}_\alpha$，由 $\mathfrak{h}^\mathfrak{e} \subset \mathfrak{u}^\mathfrak{e}$，可知 $J^\mathfrak{e} \mathfrak{h}^\mathfrak{e} = 0$。由此可见，
$J^\mathfrak{e} g_i \subset \mathfrak{g}_i$，所以 $J g_i \subset g_i$。记
\[J_i = J \mid g_i, \quad i = 1, 2, \ldots, m,\]
则易证 J_i 为 g_i 上 Koszul 算子，由它决定了 G_i/U_i 上 G_i 不变复
结构，所以 G_i/U_i 为复流形。因此 (4.19) 为 G/U 分解成复流形的
拓扑积。
最后证明 G_i/U_i 为 Kaehler 旁集空间。对 G/U 的 Kaehler 度量 g, 记由 g 给出的 Kaehler 形式为 ω, 则 ω 诱导了 g 上实斜对称双线性形式 F, 使得

$$F(X, Y) = B(W, [X, Y]), \quad \forall X, Y \in g,$$

其中 B 为 g 的 Killing 型, 而 $W \in \mathfrak{h}$, $\mathfrak{h} = C^\perp(W)$.

下面首先证明 $F(g_i, g_j) = 0$, $i \neq j$. 事实上, 由 g_i 为单 Lie 代数, 所以 $[g_i, g_j] = g_i$, $[g_i, g_i] = 0$, $i \neq j$. 故任取 $X, Y \in g_i$, $Z \in g_j$, 则

$$0 = F([X, Y], Z) + F([Y, Z], X) + F([Z, X], Y) = F([X, Y], Z)$$

所以有 $F([g_i, g_j], g_j) = 0$, 即 $F(g_i, g_j) = 0$.

今任取 $X, Y \in g_i$, 则 $X = X_1 + \cdots + X_m$, $Y = Y_1 + \cdots + Y_m$, 其中 $X_i, Y_i \in g_i$. 则由 $W = W_1 + \cdots + W_m$, $W_i \in g_i$, 有

$$F(X, Y) = B(W, [X, Y]) = B\left(\sum_{i=1}^m W_i, \sum_{j=1}^m [X_i, Y_j]\right) = \sum_{i=1}^m F_i(X_i, Y_j),$$

其中 B_i 为 Lie 代数 g_i 的 Killing 型. 由于 F 适合条件 (4.4), (4.5), (4.8), (4.9), 所以 F_i 也适合条件 (4.4), (4.5), (4.8), (4.9). 因此由 F_i 诱导了 G_i/U_i 上 G_i 不复 Kaehler 度量, 即 G_i/U_i 为 Kaehler 旁集空间, $i = 1, 2, \ldots, m$. 至此证明了定理.

注记 1 我们知道, 不可约同称 Hermite 流形可以表为旁集空间 G/K, 其中 G 为连通实单 Lie 群, K 为 G 的最大紧子群, 而且表法唯一, 即若可表成另一种形式 G_1/K_1, 则 $G = G_1, K = K_1$. 但是对不可约齐性 Kaehler 流形, 作为旁集空间的表法不一定唯一, 例如对不可约齐性 Kaehler 流形, 有下面三种流形, 它们的旁集空间表达形式不唯一.

1) $G_2/(A_1 \times T) = SO(7)/(SO(5) \times T)$;
2) $S_p(n)/(S_p(n-1) \times T) = SU(2n)/SU(2n) \cap (U(1) \times U(2n-1))$, (奇维复射影空间);
3) $SO(2n+2)/U(n+1) \sim SO(2n+1)/U(n)$, 其中 T 为一维实环面。

注记 2 如果我们用 §2 末尾的注记，那末定理 4.3 很容易地能推广为用连通约化 Lie 群作用的齐性 Kaehler 流形的结构定理。

注记 3 由定理 2.2, 定理 3.2 及定理 4.1 可知, D 空间是这种 C 空间, 使得它也是齐性 Kaehler 流形。由于这个原因, 所以 D 空间常常在有些文献中被称为 Kaehler C 空间。

注 关于齐性 Kaehler 流形的基本猜想是: "齐性 Kaehler 流形全纯同构于全纯纤维丛, 其底空间全纯同构于 C^n 中有界域, 纤维全纯同构于两个齐性 Kaehler 流形的拓扑积, 其中一个是具有不变 Kaehler 度量的交换 Lie 群, 另一个是单连通紧齐性 Kaehler 流形"。我们已经知道, 如果流形紧 (定理 2.2) 或者如果有一个连通半单 Lie 群可逆且全纯同构地作用在一个流形上 (定理 4.2), 那末这个猜想是对的。

第六章 齐性向量丛和诱导表示

§ 1 全纯纤维丛

定义 设复流形 B 到复流形 M 上有全纯映射 ϖ, 又设复流形 F 上有一个连通复Lie群 G （不必连通）全纯地作用，使得 B, M, ϖ, F, G 有如下的关系:

(1) 复流形 M 中存在开覆盖 $\{U_\alpha\}$, 使得对每个 α, $U_\alpha \times F$ 到 B 的开子流形 $\varpi^{-1}(U_\alpha)$ 上有一个全纯同构：

$$\phi_\alpha: \quad U_\alpha \times F \rightarrow \varpi^{-1}(U_\alpha),$$

且 ϕ_α 适合条件

$$\varpi \circ \phi_\alpha(x, y) = x, \quad \forall y \in F, x \in U_\alpha.$$

(2) 设 $U_\alpha \cap U_\beta \neq \emptyset$, 则存在全纯映射

$$g_{\alpha\beta}: \quad U_\alpha \cap U_\beta \rightarrow G,$$

使得

$$\phi_\alpha(x, g_{\alpha\beta}(x, y)) = \phi_\beta(x, y), \quad \forall x \in U_\alpha \cap U_\beta, y \in F,$$

则

$$(B, M, \varpi, F, G, \{U_\alpha\}, \{\phi_\alpha\}, \{g_{\alpha\beta}\})$$

称为全纯纤维丛. 其中 B 称为丛空间, M 称为底空间, F 称为纤维空间, ϖ 称为射影. 对底空间 M 中任取一点 x, 则 $\varpi^{-1}(x)$ 同胚于 F, $\varpi^{-1}(x)$ 称为点 x 上的纤维. 又 G 称为结构群. $\{g_{\alpha\beta}\}$ 称为这个全纯纤维丛的转移函数集, $g_{\alpha\beta}$ 称为转移函数.

注意 代替上面的“全纯”, 及“复流形”、“复 Lie 群”分别为“可微”, 及“\mathcal{O}^∞ 流形”、“Lie群”；或者分别为“连续”, 及“拓扑空间”、“拓扑群”, 我们可以定义 \mathcal{O}^∞ 纤维丛或者(拓扑)纤维丛.

定义 全纯纤维丛

$$(B, M, \varpi, F, G, \{U_\alpha\}, \{\phi_\alpha\}, \{g_{\alpha\beta}\})$$

及

$$(B, M, \varpi, F, G, \{V_\lambda\}, \{\psi_\lambda\}, \{k_{\lambda\mu}\})$$

称为相同的, 如果当 $U_\alpha \cap V_\lambda \neq \emptyset$ 时, 存在全纯映射

$$k_{\alpha\lambda}: \quad U_\alpha \cap V_\lambda \rightarrow G.$$

• 162 •
使得 \(\phi_\alpha(x, k_\alpha(x)y) = \psi_\alpha(x, y), \quad \forall x \in U_\alpha \cap V_\alpha, \ y \in F. \)
且 \(h_{\alpha\beta}(x) = k_\alpha(x)^{-1}g_{\alpha\beta}(x)k_\beta(x), \quad \forall x \in U_\alpha \cap U_\beta \cap V_\alpha \cap V_\beta. \)

显然全纯纤维丛的相等为等价关系，所以今后凡相等的全纯纤维丛看作一样。而且为方便起见，今后全纯纤维丛

\((B, M, \pi, F, G, \{U_\alpha\}, \{\phi_\alpha\}, \{g_{\alpha\beta}\})\)

简单地记作 \((B, M, \pi, F, G)\)，或者记作 \((B, M, \pi)\)，或者记作 \(B\).

下面举一些很有代表性，且很有用的全纯纤维丛的例子。

例 1 设 \(B = M \times F\) 为流形 \(M\) 和 \(F\) 的拓扑积，且 \(\pi: B = M \times F \to M\) 为自然射影，使 \(x \in M, y \in F, \pi(x, y) = x.\) 取 \(G = \{0\}\)，即由一个单位元素构成的 0 维 Lie 群，取 \(M\) 的开覆盖由 \(M\) 本身一个开集构成。为了符号一致起见，记 \(M = U_\alpha.\) 取 \(\phi_\alpha\) 为恒等映射，

\(g_{\alpha\beta}(x) = e, \quad \forall x \in M.\)

则得一个纤维丛 \((B, M, \pi, F, G, U_\alpha, \phi_\alpha, g_{\alpha\beta})\). 它称为 \(M\) 上具有纤维空间 \(F\) 的平凡纤维丛，这是最简单的纤维丛。

例 2 下面引进 \(M\) 上的全纯切向量丛，或简称为 \(M\) 上的全纯切丛。

设 \(M\) 为 \(n\) 维流形。\(M\) 中任取点 \(x,\) 记 \(T_x(M)^+\) 为 \(M\) 上点 \(x\) 的 \((1, 0)\) 型切向量全体构成的线性空间。引进集合

\[E = \bigcup_{x \in M} T_x(M)^+. \]

定义映射 \(\pi: E \to M, \ \text{使} \ \pi^{-1}(x) = T_x(M)^+, \ \forall x \in M.\) 取 \(F = \mathbb{C}^n,\)
\(G = GL(n, \mathbb{C}).\) 在 \(M\) 上取局部坐标邻域覆盖 \(\{U_\alpha\} .\) \(U_\alpha\) 中点坐标记作 \(z_1, \cdots, z_n.\) 于是可以定义一个到上的双射

\[\phi_\alpha: U_\alpha \times \mathbb{C}^n \to \pi^{-1}(U_\alpha), \]

使得

\[\phi_\alpha(x, (z_1, \cdots, z_n)) = \sum_{i=1}^n a^i \left(\frac{\partial}{\partial z_i} \right)_x, \]

\[\forall x \in U_\alpha, \ (z_1, \cdots, z_n) \in \mathbb{C}^n. \]

为使 \(\phi_\alpha\) 为全纯同构，便在 \(E\) 中引进了拓扑，并且有关于此拓扑的流形结构，使 \(\phi_\alpha\) 为 \(U_\alpha \times \mathbb{C}^n\) 到 \(E\) 中开集 \(\pi^{-1}(U_\alpha)\) 上的全纯
同构，取
\[
g_{\alpha \beta}(x) = \begin{pmatrix}
\left(\frac{\partial z_1^1}{\partial z_\beta^1} \right)_x & \cdots & \left(\frac{\partial z_1^n}{\partial z_\beta^n} \right)_x \\
\vdots & \ddots & \vdots \\
\left(\frac{\partial z_n^1}{\partial z_\beta^1} \right)_x & \cdots & \left(\frac{\partial z_n^n}{\partial z_\beta^n} \right)_x
\end{pmatrix} \in GL(n, \mathbb{C}),
\]
则有
\[
\phi_\beta(x, g_{\alpha \beta}(x) (a^1, \ldots, a^n)) = \phi_\beta(x, (a^1, \ldots, a^n)).
\]
至此得到一个全纯纤维丛 \((E, M, \pi, \mathbb{C}^n, GL(n, \mathbb{C}), \{U_\alpha\}, \{\phi_\alpha\}, \{g_{\alpha \beta}\})\)。它称为 \(M\) 的全纯切向量丛，简称为全纯切丛。

例 3 设 \(G\) 为连续复 Lie 群，\(H\) 为 \(G\) 的闭复 Lie 子群。于是旁集空间 \(G/H\) 中有自然的复结构，使射影 \(\pi: G \to G/H\) 是全纯映射。将 \(H\) 左平移地作用于 \(H\) 上。在 \(G/H\) 中点 \(\pi(x)\) 的邻域 \(U_x\) 上，熟知存在全纯映射 \(\sigma: U_x \to G\)，使得在 \(U_x \ni x \mapsto \sigma = id_{U_x}\)，任取 \(a \in G\)，则 \(U_a = \tau_a(U)\) 为 \(G/H\) 中点 \(\pi(a)\) 之邻域。用
\[
x \mapsto L_a \in (\tau_a^{-1}(x)), \quad \forall x \in U_a
\]
定义了映射 \(\sigma_a: U_a \to G\)，这里 \(\tau_a\) 为 \(a\) 在 \(G/H\) 上的作用：
\[
\tau_a(\pi(x)) \circ \sigma_a = \pi(a \pi(x)), \quad \forall x \in G, \quad L_a\text{ 为 }\text{Lie 群 }G\text{ 的左平移。易证这时有 }\pi \circ \sigma_a = id_{U_a}\text{ 在 }U_a\text{ 上成立。定义}
\]
\[
\phi_a: \quad U_a \times H \to \pi^{-1}(U_a)
\]
为
\[
\phi_a(x, h) = \sigma_a(x) h, \quad \forall x \in U_a, \quad h \in H.
\]
记
\[
g_{\alpha \beta}(x) = \sigma_a(x)^{-1} \sigma_b(x), \quad \forall x \in U_a \cap U_b,
\]
则 \((G, G/H, \pi, H, H, \{U_\alpha\}, \{\phi_\alpha\}, \{g_{\alpha \beta}\})\) 为全纯纤维丛。

设 \((B, M, \pi, F, G, \{U_\alpha\}, \{\phi_\alpha\}, \{g_{\alpha \beta}\})\) 为全纯纤维丛。由定义可知，转移函数有性质：设 \(U_a \cap U_b \cap U_\gamma \neq \emptyset\) 时，任取 \(x \in U_a \cap U_b \cap U_\gamma\)，有
\[
g_{\alpha \beta}(x)g_{\beta \gamma}(x) = g_{\alpha \gamma}(x).
\]
又当 \(U_a \cap U_b \neq \emptyset\) 时，
\[
g_{\alpha \beta}(x) = g_{\alpha b}(x)^{-1}, \quad \forall x \in U_a \cap U_b.
\]
特别
\[
g_{\alpha \alpha}(x) = id_{U_a}, \quad \forall x \in U_a.
\]
另外，可以定义一个映射 \(\phi_{\alpha \beta}(x) : F \to \mathbb{R}^n (x), \forall x \in U_a\)，它有
\[
(1.1) \quad \phi_{\alpha \beta}(y) = \phi_{\alpha}(x, y), \quad \forall y \in F,
\]
(1.2)
显然，这是 F 到 $\pi^{-1}(x)$ 上的全纯映射。

定义 全纯纤维丛 $(E, M, \pi, \mathbb{C}^{N}, \text{GL}(N, \mathbb{C}))$ 称为 M 上全纯向量丛。特别，当 $N=1$ 时，称为 M 上全纯线丛。

对全纯向量丛 $(E, M, \pi, \mathbb{C}^{N}, \text{GL}(N, \mathbb{C}))$，在每个纤维 $\pi^{-1}(x)$ 上可以引进复线性空间结构，使得任取 $x \in U_\alpha$，由式(1.1) 定义的映射 $\phi_{\alpha, x}$ 是 \mathbb{C}^{N} 到 $\pi^{-1}(x)$ 上的线性同构。

这样定义的线性空间结构和 α 的选取无关。事实上，若 $x \in U_\alpha \cap U_\beta \neq \phi$。有 $\phi_{\alpha, x}(y) = \phi_{\alpha}(x, y)$，$\phi_{\beta, x}(y) = \phi_{\beta}(x, y)$，$\forall y \in \mathbb{C}^{N}$。然而 $\phi_{\alpha}(x, g_{a}(x)y) = \phi_{\beta}(x, y)$。所以 $\phi_{\alpha, x}(y) = \phi_{\alpha}(x, g_{a}(x)y) = \phi_{\alpha, x}(g_{a}(x)y)$，$\forall y \in \mathbb{C}^{N}$。即 $\phi_{\beta, x} = \phi_{\alpha, x} g_{a}(x)$，在 \mathbb{C}^{N} 上成立。此即

$$\phi_{\alpha, x} \phi_{\beta, x} = g_{a}(x), \quad \forall x \in U_\alpha \cap U_\beta.$$ 由于 $g_{a}(x)$ 是 \mathbb{C}^{N} 上的线性自同构，所以 $\pi^{-1}(x)$ 的线性空间结构与 α 的选取无关。

例 2 中给出的，即复流形上的全纯切向量丛是复向量丛的一个例子。

纤维丛中最重要的一类是所谓的主纤维丛。

定义 全纯纤维丛 (P, M, π, F, G) 称为主纤维丛，如果 $F=G$，且 G 作用在 $F(=G)$ 上是按左平移作用。主纤维丛将记作 (P, M, π, G)。

例 3 给出的全纯纤维丛 $(G, G/H, \pi, H, H)$ 是以 H 为结构群的主纤维丛。

设 (P, M, π, G) 为主纤维丛。任取 $a \in G$，定义映射 $R_a: P \to P$ 如下：任取 $p \in P$，则 $\pi(p) \in M$。于是存在 $\pi(p) \in U_\alpha$。且存在 $b \in G$，使

$$p = \phi_{a}(\pi(p), b).$$

令

$$R_a(p) = \phi_{a}(\pi(p), ba),$$

为了证此映射定义有意义，需要证：设 $\pi(p) \in U_\alpha \cap U_\beta \neq \phi$，则对 $p = \phi_{a}(\pi(p), b) = \phi_{b}(\pi(p), c)$，$b, c \in G$，有 $\phi_{a}(\pi(p), ba) = \phi_{b}(\pi(p), ca)$，事实上，由 $\phi_{b}(\pi(p), c) = \phi_{a}(\pi(p), g_{a}(\pi(p))c)$
及 ϕ_α 之一一性可知 $b=g_{\alpha b}(\pi(p))a$，于是 $\phi_\alpha(\pi(p), ba) = \phi_\alpha(\pi(p), g_{\alpha b}(\pi(p))oa) = \phi_\beta(\pi(p), oa)$，便证明了断言。

映射 R_α 显然是全纯同构。它称为 P 用 $a(\in G)$ 作的右平移。今后 $R_\alpha(p)$ 改记作 $p.a$。而 $(p, a) \rightarrow p.a$ 给出了群 G 在 P 上的右作用，G 关于点 $p(\in P)$ 的轨道为 $\pi(p)$ 点上的纤维为 $\pi^{-1}(\pi(p))$。

下面从全纯纤维丛 (B, M, π, F, G) 出发造出相伴于 (B, M, π, F, G) 的主纤维丛。

首先，记 $N = \{a \in G | ay = y, \forall y \in F\}$，于时，$N$ 为 G 的闭子群，显然，它是 G 的正规子群。商群 $G/G/N$ 仍为复 Lie 群。于是 G 在 F 上的作用，化为 $	ilde{G}$ 在 F 上的有效作用。记标准映射 $G \rightarrow \tilde{G} = G/N$，则以 $a \in G$ 为代表元素的等价类 $aN = \tilde{a}$。

定义 设 (B, M, π, F, G) 为全纯纤维丛，全纯映射 $\sigma: F \rightarrow B$ 称为可容许映射，如果存在 $x \in M$，使得 σ 是 F 到 $\pi^{-1}(x)$ 上的全纯同构，且若 $x \in U_a$，则存在 $\tilde{a} \in \tilde{G}$，使得

$$\phi_a^{-1}(\sigma(y)) = \tilde{a}y, \quad \forall y \in F.$$

记 P 为全纯纤维丛 (B, M, π, F, G) 上所有可容许映射的集合。下面引进映射 $\pi_P: P \rightarrow M$。它定义为，如果 $\sigma(F) = \pi^{-1}(x)$，则 $\pi_P(\sigma) = x$。再引进映射 $\psi_a: U_a \times \tilde{G} \rightarrow \pi_P^{-1}(U_a)$，它定义为

$$\psi_a(x, \tilde{a}) = \phi_a, a \tilde{a},$$

即 $(\psi_a(x, \tilde{a}))(y) = \phi_a, a(\tilde{a} \cdot y) = \phi_a(x, \tilde{a}y), \quad \forall y \in F$。

再证 $\tilde{g}_{ab}(x) = g_{ab}(x), \forall x \in U_a \cap U_b \neq 0$。于是

$$\{P, M, \pi_P, \tilde{G}, \tilde{G}, \{U_a\}, \{\psi_a\}, \{\tilde{g}_{ab}\}\}$$

定义了一个主纤维丛。

事实上，我们可以按照使一一映射 $\psi_a: U_a \times \tilde{G} \rightarrow \pi^{-1}(U_a)$ 是全纯同构的办法，在 P 中引进拓扑和复流形结构，从而易证 (P, M, π_P, \tilde{G}) 为主纤维丛。

由上面构造可知，如果引进 $\tilde{\pi}: P \times F \rightarrow B$，它定义为 $\tilde{\pi}(p, y) = p(y)$，则有交换图

• 168 •
\[P \times F \xrightarrow{\pi} B \]
\[
\begin{array}{c}
\downarrow \\
\pi
\end{array}
\]
\[
\begin{array}{c}
P \xrightarrow{\alpha_p} M
\end{array}
\]

其中 \(P \times F \rightarrow P \) 为 \((p, y) \mapsto p \)。而且 \(\pi(p, y) = \tilde{\pi}(p', y') \) 当且仅当存在 \(\tilde{a} \in \tilde{G} \)，使得 \(p' = p \circ \tilde{a} \)，\(y' = \tilde{a}^{-1}y \)。

定义 给定全纯纤维丛 \((B, M, \pi, F, G)\)，则上面构造的主纤维丛 \((P, M, \pi_P, \tilde{G})\) 称为相伴主纤维丛。

例 4 全纯向量丛 \((E, M, \pi, \mathbb{C}^n, GL(N, \mathbb{C}))\) 上的可容许映射 \(\sigma \) 是 \(\mathbb{C}^N \) 到 \(E \) 中纤维 \(\pi^{-1}(a) \) 上的线性同构。对 \(\mathbb{C}^N \) 中标准基 \(e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \)，\(i = 1, 2, \cdots, N \) 时，则可容许映射 \(\sigma \) 的像集 \(\sigma(e_i), \cdots, \sigma(e_n) \) 为 \(\pi^{-1}(a) \) 中一组基。反之，对任意的 \(a \in M \)，及 \(\pi^{-1}(a) \) 上一组基 \(f_1, \cdots, f_n \)，可以构造 \(\mathbb{C}^n \) 到 \(\pi^{-1}(a) \) 上的线性同构 \(\sigma \) 使 \(\sigma(e_i) = f_i \)，\(i = 1, 2, \cdots, N \)。因此可容许映射可以用 \(\pi^{-1}(a) \) 中的基来表达，所以 \(P \) 可以看作由一切 \(a \in M \)，一切 \(\pi^{-1}(a) \) 中的基构成。从这个意义上来说，当 \(E \) 是 \(M \) 上的全纯切向量丛时，\(P \) 称为 \(M \) 上的全纯标架丛。

上面从 \(B \) 定义 \(P \) 的过程也可以用下面的方法反做。取 \((P, M, \pi_P, G)\)为主纤维丛，\(F \) 为复流形，\(G \) 在 \(F \) 上左作用，在 \(P \times F \) 上右作用，定义为

\[(p, y) \alpha = (p \alpha, \alpha^{-1}y), \quad \forall (p, y) \in P \times F, \alpha \in G.\]

取 \(B = (P \times F)/G \) 是 \(G \) 在 \(P \times F \) 中的轨道空间，即每个轨道看作一个元素构成的集合。定义映射 \(\pi : B \rightarrow M \)，使得下面图

\[P \times F \xrightarrow{\tilde{\pi}} B \]
\[
\begin{array}{c}
\downarrow \\
\pi
\end{array}
\]
\[
\begin{array}{c}
P \xrightarrow{\pi_P} M
\end{array}
\]

是交换图，这里 \(\tilde{\pi} \) 是 \(P \times B \) 到 \(B \) 上的自然映射。于是 \((B, M, \pi, F, G)\) 定义了一个全纯纤维丛。事实上，\(P \) 是由 \(M \) 的开覆盖 \(\{U_a\} \)
以及映射集 $\{\psi_\alpha\}$ 所定义，这里 $\psi_\alpha: U_\alpha \times G \to \pi^{-1}(U_\alpha)$ 是全纯同构。由此，我们可以引进映射 $\phi_\alpha: U_\alpha \times F \to \pi^{-1}(U_\alpha)$，它定义为

$$
\phi_\alpha(x, y) = \tilde{\pi}(\psi_\alpha(x, \theta), y), \quad \forall (x, y) \in U_\alpha \times F.
$$

容易证明 ϕ_α 是 $U_\alpha \times F$ 到 $\pi^{-1}(U_\alpha)$ 上的一一对应。所以可以在 B 上引进拓扑和复结构，使得对每个 α, ϕ_α 是 $U_\alpha \times F$ 到 $\pi^{-1}(U_\alpha)$ 上的全纯同构。因此不难证明 (B, M, π, F, G) 定义了一个全纯纤维丛。

定义 对主纤维丛 (P, M, π_P, G)，设 F 为复流形，且 G 在 F 上作用，按上面办法构造的全纯纤维丛 (B, M, π, F, G) 称为主纤维丛 (P, M, π_P, G) 的相伴纤维丛。这时，我们记 $B = P \times \pi G$。

如果从全纯纤维丛 (B, M, π, F, G) 出发，构造与之相伴的主纤维丛 (P, M, π_P, \tilde{G})，再从主纤维丛 (P, M, π_P, \tilde{G})，使 \tilde{G} 在 F 上作用，构造与之相伴的全纯纤维丛 $P \times \pi G$，由图 (1.2) 可以看出 $P \times \pi G$ 和 B 本质上相同。

设 (P, M, π_P, G) 是主纤维丛，设 $\rho: G \to GL(N, \mathbb{C})$ 是 G 的一个全纯表示，则 G 按照 $a \cdot \xi = \rho(a) \xi$, $\forall \xi \in \mathbb{C}^N, a \in G$ 可以定义 G 在 \mathbb{C}^N 上的作用。所以由这个表示，便定义了一个相伴于 (P, M, π_P, G) 的全纯向量丛 $(E, M, \pi, \mathbb{C}^N, GL(N, \mathbb{C}))$。

定义 设 (B, M, π, F, G) 为一个全纯纤维丛。全纯映射 $s: M \to B$ 称为 B 的截影，如果 $\pi \circ s = id_M$。B 的所有截影构成集合 $\Gamma(B)$。

设 $(E, M, \pi, \mathbb{C}^N, GL(N, \mathbb{C}))$ 为全纯向量丛，我们可以定义截影之和及纯量积如下：

$$(a s_1)(x) = a(s_1(x)), \quad (s_1 + s_2)(x) = s_1(x) + s_2(x),$$

$\forall x \in M, a \in \mathbb{C}, s_1, s_2 \in \Gamma(B)$. 于是 $\Gamma(B)$ 是复线性空间。这时还可以证明 $\Gamma(B)$ 是非线性空间。这时还可以证明 $\Gamma(B)$ 是非线性空间。这时还可以证明 $\Gamma(B) \neq \phi$. 事实上，任取 $x \in M$，则 $\pi^{-1}(x)$ 为线性空间，它有零向量，记作 O_x。于是可定义 $O: x \to O_x, \forall x \in M$. 易证 O 为截影，称为零截影，自然 $O \in \Gamma(B)$。

下面定理是熟知的。

定理 1.1 设 (E, M, π) 为 M 上全纯向量丛。如果 $M(\pi)$，则
\(\Gamma(E) \) 是有限维复线性空间。

下面命题在下一节有用。

命题 1.1 设 \((P, M, \varpi_P, G)\) 为主纤维丛，\(\rho: G \to GL(N, \mathbb{C})\) 为 \(G\) 的全纯表示。构造全纯向量丛 \(E = P \times_0 \mathbb{C}^N\)，则 \(E\) 的截影构成的复线性空间 \(\Gamma(E)\) 标准同构于 \(P\) 上取值于 \(\mathbb{C}^N\) 的适合下列条件的全纯向量函数 \(\tilde{s}\) 构成的复线性空间，即

\[
(1.8) \quad \tilde{s}(p \alpha) = \rho(a)^{-1} \tilde{s}(p), \quad \forall p \in P, \quad a \in G.
\]

证 任取 \(s \in \Gamma(E)\)。定义 \(\tilde{s}: P \to \mathbb{C}^N\) 为

\[
(1.4) \quad s(\varpi_p(p)) = \tilde{s}(p, \tilde{s}(p)), \quad \forall p \in P.
\]

容易证明 \(s \to \tilde{s}\) 是线性同构。命题证完。

§ 2 紧复流形嵌入射影空间

先考虑射影空间 \(P^N(C)\) 上的全纯线丛。记

\[
V = \mathbb{C}^{N+1}, \quad \{z = (z^0, z^1, \ldots, z^n)\},
\]

\[
V_* = V \setminus \{0\}.
\]

过点 \(z\) 的复直线记作 \([z]\)。于是有自然映射 \(\pi: V_* \to P^N(C)\)，使 \(\pi(z) = [z]\)。下面证明自然映射 \(\pi: V_* \to P^N(C)\) 定义了一个 \(P^N(C)\) 上主纤维丛，其结构群为 \(\mathbb{C}^* = \mathbb{C} \setminus \{0\}\)。

为此，对 \(\lambda = 0, 1, 2, \ldots, N\)，记

\[
U_\lambda = \{[z] \in P^N(C) | z^\lambda \neq 0\},
\]

则

\[
\pi^{-1}(U_\lambda) = \{z = (z^0, z^1, \ldots, z^N) | z^\lambda \neq 0\}.
\]

可以定义映射 \(\phi_\lambda: U_\lambda \times \mathbb{C}^* \to \pi^{-1}(U_\lambda)\) 为

\[
\phi_\lambda([z], a) = \left(a \frac{z^0}{z^\lambda}, \ldots, a \frac{z^{\lambda-1}}{z^\lambda}, a, a \frac{z^{\lambda+1}}{z^\lambda}, \ldots, a \frac{z^N}{z^\lambda}\right).
\]

显然，\(\phi_\lambda\) 为全纯同构，且如果 \([z] \in U_\lambda \cap U_\mu\) 有 \(\phi_\lambda([z], a) = \phi_\mu([z], b)\)，则 \([z] = [w], a = \frac{z^\lambda}{z^\mu} b\)。所以，令

\[
(2.1) \quad g_{\lambda\mu}([z]) = \frac{z^\lambda}{z^\mu}, \quad [z] \in U_\lambda \cap U_\mu,
\]

则给出了主纤维丛 \((V_*, P^N(C), \pi, \mathbb{C}^*, \{U_\lambda\}, \{\phi_\lambda\}, \{g_{\lambda\mu}\})\)。
下面定义线丛。
取整数 l, 定义映射 $x_l: \mathbb{C}^* \to \mathbb{C}^* = (GL(1, \mathbb{C}))$ 为
$$x_l(a) = a^l, \quad \forall a \in \mathbb{C}^.*$$
这给出了乘法群 \mathbb{C}^* 的表示。用此表示便构造了相伴于 $(V_\ast, P^N(\mathbb{C}), \pi, \mathbb{C}^*)$ 的纯全线丛，记作 E_l. 这时 E_l 的关于开覆盖 $\{U_\lambda\}$ 的转移函数由 $g_{\lambda \mu}(z) = (z^\lambda / z^\mu)^l$ 给出，其中 $z \in U_\lambda \cap U_\mu \neq \phi$.

在 $l = 1$ 的情形，即 E_1，它称为 $P^N(\mathbb{C})$ 上标准线丛。这时空间 E_1 全纯同构于
$$\widetilde{E}_1 = \{ (u, z) \in P^N(\mathbb{C}) \times V \mid [z] = u \text{ 或 } z = 0 \}.$$ 事实上，定义映射 $\alpha: V_\ast \times \mathbb{C} \to P^N(\mathbb{C}) \times V$ 为
$$\alpha(z, a) = ([z], az),$$ 则 $\alpha(z, a) = \alpha(w, b)$ 当且仅当 $[z] = [w], az = bw$. 所以存在 $c \in \mathbb{C}^*$，使得 $w = cz_0$，而 $b = c^{-1}a$. 因此 α 诱导了 E_1 到 \widetilde{E}_1 上的全纯同构.

线丛 E_{-1} 可以实现为 $P^N(\mathbb{C})$ 上的超平面截影集。

定理 2.1 对 $P^N(\mathbb{C})$ 上线丛 E_l，有 $l(E_l) = \{0\}$，$l > 0$，$l(E_l)$ 标准同构于 \mathbb{C}^{N+1} 上 $-l$ 次多项式函数空间，$l \leq 0$.

证 由于 E_l 是相伴于主纤维丛 $(V_\ast, P^N(\mathbb{C}), \pi, \mathbb{C}^*)$ 按照表示 x_l 得出的纯全线丛。由命题 1.1, 所以 $l(E_l)$ 同构于 V_\ast 上所有适合条件
$$\tilde{s}(az) = a^{-l} \tilde{s}(z), \quad \forall z \in V_\ast, \ a \in \mathbb{C}^*$$
的全纯函数 \tilde{s} 构成的空间。由于 $V_\ast = \mathbb{C}^{N+1} - \{0\}$, 熟知 V_\ast 上全纯函数能开拓到 \mathbb{C}^{N+1} 上，所以 \tilde{s} 能在原点附近展开成收敛幂级数
$$\tilde{s}(z) = \sum_{i_0, i_1, \ldots, i_N = 0} a_{i_0 \ldots i_N} (z^{i_0})^0 (z^{i_1})^{i_1} \cdots (z^{i_N})^{i_N}.$$ 于是
$$a^l \tilde{s}(az) = \sum_{i_0, i_1, \ldots, i_N = 0} a_{i_0 \ldots i_N} a^{i_0 + i_1 + \cdots + i_N} (z^{i_0})^0 (z^{i_1})^{i_1} \cdots (z^{i_N})^{i_N}.$$ 由于 $a^l \tilde{s}(az) = \tilde{s}(z)$ 及幂级数展开的唯一性，立即有
$$a_{i_0 \ldots i_N} (a^{i_0 + i_1 + \cdots + i_N} - 1) = 0, \quad \forall i_0, i_1, \ldots, i_N = 0, 1, \ldots$$
对一切 $a \in \mathbb{C}^*$ 成立。所以当 $l > 0$ 时，对一切指标 $\hat{i}_0, \hat{i}_1, \cdots, \hat{i}_N, a_{i_0 i_1 \cdots i_N} = 0$. 即 $\tilde{s}(z) = 0, \forall z \in V_\ast$, 故 $l(E_l) = 0, l > 0$. 当 $l \leq 0$ 时.

• 170 •
除了 $-l = \hat{\beta}_0 + \hat{\beta}_1 + \cdots + \hat{\beta}_n$ 外，$a_{i_1, \ldots, i_n} = 0$。这证明了 $\hat{s}(z)$ 是 z^0, z^1, \ldots, z^N 的 $-l$ 次齐次多项式。定理证完。

设 M 为紧复流形，$(E, M, \pi, \mathbb{C}, \mathbb{C}^*, \{U_{\alpha}\}, \{\varphi_{\alpha}\}, \{g_{\alpha\beta}\})$ 为 M 上全纯线丛。已知 $\dim \Gamma(E) < \infty$。设 $\Gamma(E) \neq \{0\}$。在 $\Gamma(E) = \{0\}$ 中取一子集合 $\{s_0, s_1, \ldots, s_N\}$，使它适合条件 (2.2)，即

$$\text{任取 } x \in M，存在指标 } \hat{i}，使得 s_i(x) \neq 0.$$

利用子集合 $\{s_0, s_1, \ldots, s_N\}$，可以定义一个全纯映射

$$\sigma : M \rightarrow \mathbb{P}^N(\mathbb{C}),$$

它定义为：任取 $x \in U_{\alpha}$ 则有 $s(x) \in \pi^{-1}(U_{\alpha})$，由于 $\varphi_{\alpha} : U_{\alpha} \times \mathbb{C} \rightarrow \pi^{-1}(U_{\alpha})$ 所以

$$s_i(x) = \phi_{\alpha}(x, u), \quad u \in \mathbb{C}.$$

注意到 ϕ_{α} 为一一映射，所以 u 由 $s_i(x)$ 唯一决定。改记 $u = s_{i, \alpha}(x)$，则有

$$s_i(x) = \phi_{\alpha}(x, s_{i, \alpha}(x)).$$

于是

$$t(s_{0, \alpha}(x), \ldots, s_{N, \alpha}(x)) \in \mathbb{C}^{N+1}.$$

由条件，存在指标 j，使 $s_j(x) \neq 0$。所以必有 $s_{i, \alpha}(x) \neq 0$，即

$$t(s_{0, \alpha}(x), \ldots, s_{N, \alpha}(x)) \in \mathbb{C}^{N+1} - \{0\}.$$

于是可以定义

$$\sigma(x) = [t(s_{0, \alpha}(x), \ldots, s_{N, \alpha}(x))] \in \mathbb{P}^N(\mathbb{C}).$$

为了证明它定义了一个单值映射。需要证明：如果 $U_{\alpha} \cap U_{\beta} \neq \emptyset$，且 $x \in U_{\alpha} \cap U_{\beta}$，则

$$[t(s_{0, \alpha}(x), \ldots, s_{N, \alpha}(x))] = [t(s_{0, \beta}(x), \ldots, s_{N, \beta}(x))] .$$

事实上，这时

$$s_i(x) = \varphi_{\alpha}(x, s_{i, \alpha}(x)) = \varphi_{\beta}(x, s_{i, \beta}(x)) = \varphi_{\alpha}(x, g_{\alpha\beta}(x) s_{i, \beta}(x)), $$

由 φ_{α} 的一一性，有

$$s_{i, \alpha}(x) = g_{\alpha\beta}(x)s_{i, \beta}(x).$$

注意 $g_{\alpha\beta}(x) \in \mathbb{C}^*$，即 $g_{\alpha\beta}(x)$ 为非零复数。而

$$t(s_{0, \alpha}(x), \ldots, s_{N, \alpha}(x)) = g_{\alpha\beta}(x)t(s_{0, \beta}(x), \ldots, s_{N, \beta}(x)).$$

这证明了在 $\mathbb{P}^N(\mathbb{C})$ 中 $[t(s_{0, \alpha}(x), \ldots, s_{N, \alpha}(x))]$ 和 $[t(s_{0, \beta}(x), \ldots, s_{N, \beta}(x))]$ 相等。即 σ 有意义。显然，σ 是全纯映射。
为了后面有用，我们给出下面引理。

引理 2.1 给定主纤维丛 \((P, M, \pi_P, G)\) 及全纯表示 \(\rho: G \to \mathbb{C}^*\)。由它构造相伴的全纯线丛 \(E = P \times \mathbb{C}\)。取 \(s \in \Gamma(E)\)，按命题 1.1 定义了 \(P\) 上全纯函数 \(\tilde{s}\)。则

\[
\sigma(x) = [^t(s_0(p), \ldots, s_N(p))], \quad \forall p \in \pi_P^{-1}(x).
\]

证明 今 \(\sigma(x) = [^t(s_{0, \alpha}(x), \ldots, s_{N, \alpha}(x))]\)，其中 \(x \in U_\alpha\)。而任取 \(\alpha = 0, 1, \ldots, N\)，有

\[
s_\alpha(x) = \phi_\alpha(x, s_{\alpha, i}(x)) = \tilde{\pi}(\psi_\alpha(x, \theta), s_{\alpha, i}(x)).
\]

但是由式 (1.4)，\(s_\alpha(\pi_P(p)) = \tilde{\pi}(p, \tilde{s}_i(p)), \quad \forall p \in P\)。取 \(p \in \pi_P^{-1}(x)\)，则 \(x = \pi_P(p)\)，代入前式，有

\[
s_\alpha(\pi_P(p)) = \tilde{\pi}(\psi_\alpha(\pi_P(p), \theta), s_{\alpha, i}(\pi_P(p)))
\]

\[
= \tilde{\pi}(p, \tilde{s}_i(p)).
\]

注意到 \(P\) 由 \(\{(U_\alpha, \psi_\alpha)\}\) 定义，\(E\) 由 \(\{(U_\alpha, \phi_\alpha)\}\) 定义，而 \(\tilde{\pi}: P \times \mathbb{C} \to E = P \times \mathbb{C}/G\)，其中 \(G\) 在 \(P \times \mathbb{C}\) 上作用为 \((p, y) \cdot g = (pg, \rho(g)^{-1}y)\)。因此 \(P \times \mathbb{C}\) 中点 \((\psi_\alpha(\pi_P(p), \theta), s_{\alpha, i}(\pi_P(p)))\) 和 \((p, \tilde{s}_i(p))\) 落在同一个轨上，即存在 \(\alpha \in G\)，使 \(\psi_\alpha(\pi_P(p), \theta) = \rho(\alpha)^{-1} \psi_\alpha(\pi_P(p), \theta)\)

\[
s_{\alpha, i}(\pi_P(p)) = \rho(\alpha)^{-1} \tilde{s}_i(p).\]

由式 (1.8)，有 \(\tilde{s}_i(p \alpha) = \rho(\alpha)^{-1} \tilde{s}_i(p), \quad \forall p \in P; \alpha \in G\)。这证明了

\[
s_{\alpha, i}(x) = \tilde{s}_i(\psi_\alpha(x, \theta)),
\]

今 \(\psi_\alpha(x, \theta) = p \in \pi_P^{-1}(x)\)。所以

\[
\sigma(x) = [^t(s_{0, \alpha}(x), \ldots, s_{N, \alpha}(x))] = [^t(\tilde{s}_0(\psi_\alpha(x, \theta)), \ldots, \tilde{s}_N(\psi_\alpha(x, \theta)))]
\]

对 \(p = \psi_\alpha(x, \theta)\) 成立。但是 \(\tilde{s}_i(p \alpha) = \rho(\alpha)^{-1} \tilde{s}_i(p)\)，所以任取 \(q \in \pi_P^{-1}(x)\)，则存在 \(\alpha \in G\)，使 \(q = p \alpha\)。因此

\[
[^t(\tilde{s}_0(q), \ldots, \tilde{s}_N(q))] = [\rho(\alpha)^{-1} \tilde{s}_0(p), \ldots, \tilde{s}_N(p))]
\]

即这证明了

\[
\sigma(x) = [^t(\tilde{s}_0(p), \ldots, \tilde{s}_N(p))], \quad \forall p \in \pi_P^{-1}(x),
\]

\[
\cdot 172.
\]
引理证完。

定义 M 上全纯线丛 E 称为非常大的，如果在 $F(E)$ 中存在适合 (2.2) 的非零截影集 $\{s_0, s_1, \ldots, s_N\}$，使得由它定义的全纯映射 $\sigma: M \rightarrow P^N(\mathbb{C})$ 为全纯嵌入。映射 σ 称为相伴于 M 上最大线丛的映射。

定理 2.2 设 M 是 $P^N(\mathbb{C})$ 中闭于复流形。记 $E = E_{-1}|M$，($E_{-1}|M$ 意为 E_{-1} 中在 M 上的限制) 为 M 上全纯线丛。则 E 是 M 上最大线丛。而且在 $F(E)$ 中存在非零截影 s_0, s_1, \ldots, s_N，按它们定义的映射 $\sigma: M \rightarrow P^N(\mathbb{C})$ 为恒等嵌入。

证 设 $M \supset P^N(\mathbb{C})$。这时 $E = E_{-1}|M = E_{-1}$。显然 \mathbb{C}^{N+1} 上 $N+1$ 个坐标的函数 z^0, z^1, \ldots, z^N 构成线性空间 \mathbb{C}^{N+1} 的对偶空间的一组基。由定理 2.1，$F(E)$ 线性同构于线性空间 \mathbb{C}^{N+1} 的对偶空间。在这线性同构下，z^i 对应于 $F(E)$ 中基元素 s_i, $i = 0, 1, \ldots, N$。由引理 2.1，我们有

$$
\sigma([z]) = ([s_0([z]), s_1([z]), \ldots, s_N([z])] = [z],
$$
即 σ 为 $P^N(\mathbb{C}) = M$ 上恒等映射。

在一般情形，$M \supset P^N(\mathbb{C})$。这时在 E_{-1} 中有截影 s_0, s_1, \ldots, s_N，使得 $s_0|\cdot M, s_1|\cdot M, \ldots, s_N|\cdot M$ 定义了一个映射 $\sigma: M \rightarrow P^N(\mathbb{C})$。这个映射可以开拓到 $P^N(\mathbb{C})$ 上，它由 s_0, s_1, \ldots, s_N 定义。由前一种情形，这是恒等映射。所以证明了定理。

由此定理可知，任一紧复流形 M，可以用相伴于最大线丛所定义的映射 σ 嵌入 $P^N(\mathbb{C})$ 中，而且这个线丛可以用 $\sigma(M)$ 的线丛 E_{-1} 上 $\sigma(M)$ 上的限制所导出。

§ 3 齐性向量丛和诱导表示

记 G 为复 Lie 群，L 为 G 的闭复 Lie 子群，设 $G/L = M$ 为紧复流形空间。记 V 为 N 维复线性空间，记 V 的所有线性自同构构成的线性群为 $GL(V)$。在 V 中取定一组基后，$GL(V)$
可表为 $GL(N, \mathbb{C})$.

对 L 的纯全表示 $x: L \to GL(V)$. 由 §1 之例 3 构造出的主丛 (G, M, π, L) 出发, 可造出与之相伴的纯全向量丛 (E, M, π, V), 即 $E = G \times L V$. 这里 E 是定义为 $G \times V$ 关于 L 的右作用:

$$(p, v) l = (pl, x(l)^{-1} v), \quad \forall (p, v) \in G \times V, l \in L$$

下的商（即轨道空间）。

定义 G 在 $G \times V$ 上左作用如下:

$$a(p, v) = (ap, v), \quad \forall (p, v) \in G \times V, a \in G.$$ 于是 L 在 $G \times V$ 上的右作用和 G 在 $G \times V$ 上的左作用可交换. 因此诱导了 G 在商空间 E 上的作用. 取 $a \in G, a$ 在 $G \times V$ 上的左作用诱导了 E 上的作用记作 A_a, 则显然有:

$$A_a \circ A_b = A_{ab}, \quad \forall a, b \in G,$$

$$\pi \circ A_a = \tau_a \circ \pi, \quad \forall a \in G.$$ 这里 τ_a 定义为 $\tau_a(bL) = (ab)L, \forall a \in G, bL \in G/L$.

显然, G 按照 $\{A_a | \forall a \in G\}$ 定义了 E 上的作用, 使 E 为齐性空间. 这时, (E, M, π, V) 称为 $M = G/L$ 上按照表示 $x: L \to GL(V)$ 定义的齐性向量丛.

设 $\Gamma(E) \neq \{0\}$. 由于 $M = G/L$ 紧, 所以 $\dim \Gamma(E) < \infty$. 于是每个 $a \in G$, 定义了线性空间 $\Gamma(E)$ 的自同构 $x^*(a)$ 为:

$$(x^*(a)s)(x) = A_{as}(\tau_x^{-1} x), \quad \forall x \in M, s \in \Gamma(E), a \in G.$$ 现在来证明 x^* 为复 Lie 群 G 的纯全表示. 今任取 $a, b \in G$, 则

$$(x^*(ab)s)(x) = A_{as}(\tau_{ab}^{-1} x),$$

$$(x^*(a) x^*(b)s)(x) = A_{as}(x^*(b)s)(\tau_x^{-1} x) = A_a A_{bs}(\tau_{ab}^{-1} x) = A_a A_{bs}(\tau_{ab}^{-1} x).$$

由于 $A_{ab} = A_a \circ A_b$. 这证明了 $x^*(ab) = x^*(a) x^*(b)$. 再证 $x^*(a)^{-1} = x^*(a)$. 事实上, 只要证 $x^*(s) = \text{id}_{\Gamma(E)}$, 即可. 今 $(x^*(s)x) = A_s(\tau_x^{-1} x) = s(x), \forall s \in \Gamma(E), x \in M$. 这证明了 $x^*(s) = \text{id}_{\Gamma(E)}$.

余下要证 x^* 为 G 上的纯全映射. 由命题 1.1. 从 $s \in \Gamma(E)$ 导出映射 $\tilde{s}: G \to V$, 有 $\tilde{s}(pl) = x(l)^{-1} \tilde{s}(p), \forall l \in L, p \in G$. 又记标

174.
准映射 \(\tilde{\pi}: G \times V \rightarrow E \)，则

\[s(x) = \tilde{\pi}(p, \tilde{s}(p)), \quad \pi_G(p) = w. \]

记 \(\pi_G: G \rightarrow M = G/L \) 为自然映射，先证明

\[
(3.1) \quad (x^\ast(a) \tilde{s})(p) = \tilde{s}(a^{-1}p), \quad \forall a, p \in G, s \in \Gamma(E).
\]

事实上，

\[
\tilde{\pi}(p, (x^\ast(a) \tilde{s})(p)) = (x^\ast(a)(s))(x) = A_\omega s(x) = A_\omega \tilde{\pi}(a^{-1}p, \tilde{s}(a^{-1}p)) = \tilde{\pi}(p, \tilde{s}(a^{-1}p)).
\]

这证明了式 (3.1) 成立。

今由 \(\dim \Gamma(E) < +\infty \)，在 \(\Gamma(E) \) 中取基 \(s_0, s_1, \cdots, s_N \)。于是

\[
(3.2) \quad a^\ast(a) s_j = \sum_{i=0}^{N} m_{ij}^a(a) s_i, \quad j = 0, 1, \cdots, N,
\]

即

\[
M(a) = \begin{pmatrix}
 m_{11}(a) & \cdots & m_{1N}(a) \\
 \vdots & \ddots & \vdots \\
 m_{N1}(a) & \cdots & m_{NN}(a)
\end{pmatrix}
\]

为 \(\omega^\ast(a) \) 的方阵表示。为了证 \(\omega^\ast \) 为 \(G \) 的全纯表示，只要证所有 \(m_{ij}(a), 0 \leq i, j \leq N \) 都是 \(G \) 的全纯函数即可。

由 (3.1) 及 (3.2) 推出

\[
(3.3) \quad \tilde{s}_j(a^{-1}p) = (a^\ast(a) \tilde{s}_j)(p) = \sum_{i=0}^{N} m_{ij}^a(a) \tilde{s}_i(p),
\]

\[j = 0, 1, \cdots, N, \]

\[\forall a \in G, p \in G \] 成立。但是 \(s_0, s_1, \cdots, s_N \) 线性无关，及 \(s_i(x) = \tilde{\pi}(p, \tilde{s}_i(p)), x = \pi_G(p) \) 可知 \(\tilde{s}_0, \tilde{s}_1, \cdots, \tilde{s}_N \) 也线性无关。因此在 \(G \) 中存在 \(N+1 \) 个元素 \(p_0, p_1, \cdots, p_N \)，使

\[
\begin{vmatrix}
 \tilde{s}_0(p_0) & \cdots & \tilde{s}_0(p_N) \\
 \vdots & \ddots & \vdots \\
 \tilde{s}_N(p_0) & \cdots & \tilde{s}_N(p_N)
\end{vmatrix} \neq 0.
\]

另一方面，固定 \(j, 0 \leq j \leq N \)，则

\[
\tilde{s}_j(a^{-1}p_k) = \sum_{i=0}^{N} m_{ij}^a(a) \tilde{s}_i(p_k), \quad k = 0, 1, \cdots, N.
\]

由 Cramer 法则可知 \(m_{ij}(a) \) 是 \(\tilde{s}_j(a^{-1}p_0), \cdots, \tilde{s}_j(a^{-1}p_N) \) 的线性组合。但是 \(\tilde{s}_j(a^{-1}p_k) \) 是 \(a \in G \) 上全纯函数，这证明了 \(m_{ij}(a) \) 是 \(a \in G \) 上全纯函数。即 \(\omega^\ast \) 为 \(G \) 上全纯表示。
现在设 \(\dim V = 1 \). 这时 \(E \) 为相伴于 \((G, M, \pi_0, L) \) 用一维表示 \(x \) \(L \rightarrow \mathbb{C}^* \) 造出的全纯线丛, 设 \(\Gamma(E) \neq \{0\} \), 且 \(\{s_0, s_1, \cdots, s_N\} \) 为 \(\Gamma(E) \) 的一组基. 这时条件 (2.2) 自动满足. 事实上, 设 \(0 \neq s \in \Gamma(E) \), 则存在 \(x_0 \in M \), 使得 \(s(x_0) \neq 0 \). 今 \(G \) 在 \(M = G/L \) 上作用可传, 且

\[
(x^h(a)s)(\tau_ax_0) = A_os(x_0) \neq 0.
\]

这证明了任取一点 \(x \in M \), 存在 \(s' \in \Gamma(E) \), 使 \(s'(x) \neq 0 \). 而 \(s' = \sum_{i=0}^{N} \lambda_is_i \). 由 \(s'(x) = \sum_{i=0}^{N} \lambda_is_i(x) \neq 0 \) 可知, 存在 \(i \), \(0 \leq i \leq N \), 使得 \(s_i(x) \neq 0 \). 即条件 (2.2) 满足.

定义 \(G \) 的全纯表示 \(a^# \) 称为由 \(L \) 的表示 \(a \) 诱导的表示, 表示空间为 \(\Gamma(E) \).

上面给出了 \(G \) 的全纯表示 \(a^# \) 的方阵表达形式. 即在 \(\Gamma(E) \) 中取定适合条件 (2.2) 的基 \(s_0, s_1, \cdots, s_N \), 则 \(a^#(x) \) 的方阵表示为 \(M(a), \forall a \in G \). 于是 \(G \) 有全纯矩阵表示

\[
a \mapsto M(a), \quad \forall a \in G.
\]

定义 记

\[
M^*(a) = {}^tM(a)^{-1}.
\]

显然 \(a \mapsto M^*(a) \) 是复 \(\text{Lie} \) 群 \(G \) 的一个线性表示, 称为表示 \(a^#; a \mapsto M(q) \) 的逆步表示.

另一方面, 由 \(\mathbb{C}^{N+1} \) 上的线性变换 \(M^*(a) \), 诱导了射影空间 \(P^N(\mathbb{C}) \) 上的射影变换, 记作 \(\hat{M}^*(a) \). 于是有关系

\[
(3.4) \quad \sigma(ax) = \hat{M}^*(a)\sigma(x), \quad \forall x \in M; a \in G.
\]

事实上, 对 \(\Gamma(E) \) 中取定的基 \(s_0, s_1, \cdots, s_N \). 由 § 2 定义的映射 \(\sigma: M \mapsto P^N(\mathbb{C}) \) 为

\[
\sigma(x) = [{}^t(s_0(x), s_1(x), \cdots, s_N(x))], \quad \forall x \in M.
\]

由引理 2.1, 有

\[
\sigma(x) = [{}^t(\tilde{s}_0(p), \tilde{s}_1(p), \cdots, \tilde{s}_N(p))],
\]

\(\forall x \in M, p \in \pi_0^{-1}(x) \).

由于 \(\pi_0: G \mapsto G/L \) 为自然映射, 所以任取 \(a \in G, a \in \pi_0(p) \), 则由 \(ax \)
\(-a \pi_0(p) = \pi_0(ap) \), 有

(3.5) \(\sigma(ax) = [t(s_0(ap), s_1(ap), \ldots, s_N(ap))] \)

由(3.3) 式, 有

\(t(s_0(ap), \ldots, s_N(ap)) = M^*(a)t(s_0(p), \ldots, s_N(p)). \)

这证明了(3.4).

引理 3.1：符号同上，\(M = G/L \) 的象集 \(\sigma(M) \) 不包含在 \(P^*(\mathbb{C}) \) 的任一非零真子空间中。

证：利用 \(s_0, s_1, \ldots, s_N \) 线性无关立即可证之。

§ 4 Borel–Weil 定理

在这一节, \(M = G/P \) 为 \(D \) 空间, 其中 \(G \) 为单连通复半单 Lie 群, \(P \) 为 \(G \) 的抛物子群。

考虑 \(M \) 上的全纯线丛. 已知 \(M \) 上的任何全纯线丛必然相伴有用 \(P \) 的一个一维表示构造出的主纤维丛 \((G, M, \pi_0, p)^* \). 但是这个结果在下面没有用处。

我们用第四章, § 3 引进的记号. 不失一般性, 无妨假设 \(P = P_{x_0} \). 所以 \(P \) 的 Lie 代数 \(\mathfrak{p} \) 为

\[\mathfrak{p} = \mathfrak{p}_{x_0} = \mathfrak{h} + \sum_{a \in D^{\cup [x_0]}} \mathfrak{g}_a. \]

取

\[\mathfrak{g}_{x_0} = \mathfrak{h} + \sum_{a \in [x_0]} \mathfrak{g}_a, \]

\[\mathfrak{n} = \sum_{a \in D \setminus [x_0]} \mathfrak{g}_a, \]

\[\mathfrak{h}_0 = \{ H \in \mathfrak{h} \mid \alpha(H) = 0, \ \forall \alpha \in \pi_0 \}. \]

则 \(\mathfrak{n} \) 是幂零 Lie 代数, 且

\[\mathfrak{n} \subset [\mathfrak{p}, \mathfrak{p}], \quad \mathfrak{g}_{x_0} = \mathfrak{h}_0 + [\mathfrak{g}_{x_0}, \mathfrak{g}_{x_0}]. \]

记 \(x_0: P \to \mathbb{C}^* \) 为一个全纯表示. 则其微分 \(dx: \mathfrak{p} \to \mathbb{C} \) 是 Lie 代数的表示, 使得

\[dx|_n = dx|_{[\mathfrak{g}_{x_0}, \mathfrak{g}_{x_0}]} = 0. \]

所以 dx 由 ξ_0 上的限制所决定。

反之，设 A 为 \mathfrak{h} 上强整形式，使得

$$
\langle A, \alpha \rangle = 0, \quad \forall \alpha \in \pi_0.
$$

记 $T = \exp \mathfrak{h}$，构造同态 $\varphi: T \to \mathbb{C}^*$ 为

$$
\varphi(\exp H) = e^{-\Delta(A)}, \quad \forall H \in \mathfrak{h}.
$$

同态核为 $\{ \exp H \in T \mid A(H) = 0 \}$. 由 (4.1)，它有生成元

$$
\left\{ \exp \frac{H_\alpha}{\langle \alpha, \alpha \rangle} \mid \alpha \in \pi_0 \right\}.
$$

G 中连通子群 $G_{x,z}$ 对应了 Lie 代数 $\mathfrak{g}_{x,z}$. 由于 $\mathfrak{g}_{x,z} = \mathfrak{h}_0 + [\mathfrak{g}_{x,z}, \mathfrak{g}_{x,z}]$ 为空间直接和，而 $[\mathfrak{g}_{x,z}, \mathfrak{g}_{x,z}]$ 为理想，它对应 G 中闭 Lie 子群 $G'_{x,z}(G_{x,z}$ 的换位子群)，于是有 $G_{x,z}$ 的乘积分解 $G_{x,z} = TG'_{x,z}$. 由条件 (4.1)，$\varphi(G'_{x,z} \cap T)^{-1} = 1$. 所以 φ 可扩充为 $G_{x,z}$ 上的同态 $\varphi: G_{x,z} \to \mathbb{C}^*$，使得 $\varphi(G'_{x,z}) = 1$.

由第三章，命题 2.1，P 是半直积 $P = G_{x,z} \cdot N$，其中 N 为 G 中对应 Lie 代数 π 的连通子群，所以 φ 又可扩充为 P 上的同态 $\varphi: P \to \mathbb{C}^*$，使得 $\varphi(N) = 1$.

总之，从 \mathfrak{h} 上同态 (4.2)，扩充为 P 上同态。这是 P 的一维表示。

定理 4.1 (Borel–Weil) 设 A 为 \mathfrak{h} 上适合 (4.1) 的强整形式，

$\varphi: P \to \mathbb{C}^*$ 为 P 上的一维表示，且适合条件 (4.2). 设 $(E_{\pi}, M, \pi, \mathbb{C})$ 为相伴于主纤维丛 (G, M, π_0, P) 用表示 φ 所构造的全纯线丛，

则 $\Gamma(E_{\pi}) \neq \{0\}$，且 G 在 $\Gamma(E_{\pi})$ 上的诱导表示为 G 的具有最低权 A 的不可约表示。

证 先证 $\Gamma(E_{\pi}) \neq \{0\}$. 已知对 A，存在 G 的不可约表示 ρ，使其最高权即 A，记表示 ρ 的表示空间为 V，使 v_0 为 V 中属于最高权 A 的非零权向量。在 V 中引进 Hermite 内积 $(,)$. 任取 v，则 $p \mapsto (\rho(p)v_0, v)$ 为 G 上复值函数，记作 \tilde{v}. 若 $I \in P$，则有

$$
\tilde{v}(pl) = (\rho(pl)v_0, v) = (\rho(p)\rho(I)v_0, v).
$$

任取 $X \in \mathfrak{g}_{x,z}$，则 $X = H + \sum_{\alpha \in \Delta_0(\pi_0)} X_\alpha$，其中 $H \in \mathfrak{h}$，$X_\alpha \in \mathfrak{g}_\alpha$.

dd
由于 $\rho(X_{0})V_{\lambda}\subset V_{\lambda_{0}}$, $\forall \alpha \in \Delta$. 但 λ 为最高权，所以 $V_{\lambda_{0}} = 0$, $\forall \alpha \in \Delta_{+}$. 又 $\lambda_{0} > 0$, $\langle \lambda_{0}, \alpha \rangle \leq 0$, $\forall \alpha \in [\pi_{0}]^{-}$. 当 $\alpha \in [\pi_{0}] \cap \Delta_{+}$ 时，$\lambda_{0} + \alpha$ 不是权，所以 $V_{\lambda_{0}+\alpha} = 0$. 这证明了任取 $t \in P_{x_{0}}$，则 $\rho(t)v_{0} = x_{0}(t)v_{0}$，使 $x_{0}(t) = x(t)^{-1}$，其中 $x(t)$ 由式 (4.2) 之 x 开拓而成. 自然，$x_{0} : P_{x_{0}} \to \mathbb{C}^{*}$ 为 $P_{x_{0}}$ 的一维表示. 又

$$\tilde{v}(\rho l) = (\rho (p) \rho (l)v_{0}, v) = x_{0}(l)(\rho (p)v_{0}, v) = x_{0}(l)\tilde{v}(p)$$

$\forall l \in P_{x_{0}}, p \in G$. 由命题 1.1，存在 $s \in \Gamma (E)$，使 $s = \tilde{v}$，显然，存在 $v \in V$，使得 $\tilde{v} \neq 0$. 例如可取 $v = v_{0}$，所以 $S \neq 0$. 这证明了 $\Gamma (E) \neq \{0\}$.

再证 G 在 $\Gamma (E_{s})$ 上的诱导表示 $s^{\#}$ 为不可约表示.

符号同 § 3. 由 $\Gamma (E_{s})$ 中的一组基 $s_{0}, s_{1}, \ldots, s_{N}$ 便定义了映射 $\sigma : M \to P^{N}(\mathbb{C})$，由 (3.6)，有 $\sigma (a_{p}) = \tilde{M}^{*}(a)\sigma (p)$，$\forall p \in G/P_{x_{0}}$. 特别取 $0 = \pi_{0}(\theta) \in G/P_{x_{0}}$，则有 $\sigma (a_{0}) = \tilde{M}^{*}(a)\sigma (0)$. 当 $a \in P_{x_{0}}$，则 $a_{0} = 0$. 所以 $\tilde{M}^{*}(a)$ 将 $\sigma (0)$ 映为自己. 这证明了表示 $P^{N}(\mathbb{C})$ 中点 $\sigma (0)$ 的直线 $[v] \subset \mathbb{C}^{N+1}$ 在 $\tilde{M}^{*}(a)$ 下映为自身，$\forall a \in P_{x_{0}}$. 今 $P_{x_{0}}$ 中有 Borel 子群 B，使 B 的 Lie 代数为 $\mathfrak{b} = \mathfrak{h} + \sum_{a_{0} > 0} \mathfrak{g}_{a}$. 所以 G 的表示

$$(a^{\#})^{*} : a \to \tilde{M}^{*}(a)$$

在 \mathbb{C}^{N+1} 的直线 $[v]$ 中有一点 v 为最高权的权向量.

另一方面，由引理 3.1，$\sigma (G/P_{x_{0}})$ 不包含在 $P^{N}(\mathbb{C})$ 的任一真子空间中. 所以 $\{(a^{\#})^{*}(a)v \mid \forall a \in G\}$ 生成 \mathbb{C}^{N+1}. 即 $\{d(a^{\#})^{*}(X)\}

\cdots d(a^{\#})^{*} (X_{r})v \mid X_{1}, \ldots, X_{r} \in \mathfrak{g} = \text{Lie } G, \ r \geq 0\}$ 生成 \mathbb{C}^{N+1}. 因此

$(a^{\#})^{*}$ 是 G 的不可约表示，因此 $a^{\#}$ 也是 G 的不可约表示.

今由引理 2.1

$$[v] = \sigma (0) = [\tilde{v}(\theta), \tilde{s}_{1}(\theta), \ldots, \tilde{s}_{N}(\theta))].$$

由式 (3.5) 有 $\sigma (a) = \tilde{M}^{*}(a)\sigma (0)$. 因此

$$\tilde{M}^{*}(a)\begin{pmatrix}
\tilde{s}_{0}(\theta) \\
\vdots \\
\tilde{s}_{N}(\theta)
\end{pmatrix} = \begin{pmatrix}
\tilde{s}_{0}(a) \\
\vdots \\
\tilde{s}_{N}(a)
\end{pmatrix} = x_{0}(a)\begin{pmatrix}
\tilde{s}_{0}(\theta) \\
\vdots \\
\tilde{s}_{N}(\theta)
\end{pmatrix}, \ \forall a \in T,$$
其中 $T = \exp \mathfrak{h} \subset P_{\mathfrak{h}}$, 而

$$x_0(\exp H) = x(\exp H)^{-1} = \theta^{\sigma(H)}.$$

这证明了 A 为 G 的不可约表示 $(x^*)^*$ 的最高权，所以 $-A$ 为 G 的不可约表示 x^* 的最低权。定理证完。

定理 4.2 单连通复半单 Lie 群 G 的任 - 可约表示由 G 的某个 Borel 子群 B 的一个一维表示所诱导。

证 代替 Borel 子群为上面定理中的抛物子群。即取 $x_0 = \phi$。

用定理 4.1, 对任一强整形式 A, 存在 B 的一维表示, 它的诱导以 $-A$ 为最低权。熟知 G 的所有不可约表示的最低权构成的集合等于集合 \{-A\}, 其中 A 遍历所有强整形式。定理证完。

最后，我们证明由第四章定理 3.2 给出的嵌入映射 $\Sigma: M \to P^N(\mathbb{C})$ 等于这节给出的映射 $\sigma: M \to P^N(\mathbb{C})$. 为此，仍然用定理 4.1 的证明中引入的符号。由于 ρ 和 $(x^*)^*$ 有相同的最高权 A, 所以不可约表示 ρ 和 $(x^*)^*$ 等价。特别 $\dim V = \dim \Gamma(B) = N + 1$. 因此，按 $\tilde{\sigma}(p) = x_0(\tilde{\theta}(p)) \in B, p \in G$ 定义了 $\tilde{s} \in \Gamma(B)$ 使 $\tilde{\sigma}(p) = \tilde{\theta}(p)$. 于是建立了 V 到 $\Gamma(B)$ 内的映射 $v \to s_0$. 这个映射是一一的。事实上，$s_0 = 0$, 则 $\tilde{s}_0 = 0$. 所以 $\tilde{\sigma} = 0$. 但 $\tilde{\sigma}(p) = (\rho(p)\varphi_0, \varphi)$, 却 ρ 为不可约表示, $(\rho(p)\varphi_0, \varphi) = 0$, $\forall p \in G$, 则由 $\{\rho(p)\varphi_0 | p \in G\}$ 生成 V, 所以 $v = 0$. 因此 V 中关于内积 $(,)$ 的标准正交基 $\sigma_0, \sigma_1, \cdots, \sigma_N$, 对应于 $\Gamma(B)$ 中基 s_0, s_1, \cdots, s_N, 设 $\rho(p)\varphi_0 = \sum_{i=0}^{N} \alpha_i \sigma_i$, 则 $\tilde{\sigma}_i(p) = (\rho(p)\varphi_0, \sigma_i) = \alpha_i$, $\tilde{\alpha} = 0, 1, \cdots, N$. 因此对 V 中元

$$v = \sum_{i=0}^{N} a_i \sigma_i,$$

对应 \mathbb{C}^{N+1} 中点 (a_0, a_1, \cdots, a_N), 则有

$$\sigma(\varphi) = [\tilde{\alpha}(\tilde{s}_0(p)), \tilde{s}_1(p), \cdots, \tilde{s}_N(p))] = [\alpha_0, \alpha_1, \cdots, \alpha_N] = [\rho(p)\varphi_0]$$

$$= \Sigma(\varphi), \forall \varphi \in M.$$

这证明了由第四章定理 4.1 给出的嵌入映射 Σ 等于映射 σ, 其中
σ 按照与 \((G, G/P, π_0, P)\) 相伴，用 \(P\) 的一维表示 \(x\) 定义的齐性向量丛所定义。

注意 Borel-Weil 定理没有发表过。仅出现在 J. P. Serre "Représentations linéaire et espaces homogènes Kählériens des groups de Lie compacts"。刊登在 Séminaire Bourbaki (1954)。后来, Bott 和 Kostant 推广了这个定理。
后记

下面介绍齐性空间理论在许多领域中的发展和应用。给出一些课题和它们在近几年的参考文献。虽然这些文献在每个方向中并不一定特别重要，但是它们反映了近年来的发展状况。

1) 齐性空间的微分几何

J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293~329.

也有一些人讨论Kahler C-空间的等度量射影嵌入以及相关的问题，见

2) 代数群

关于一般知识，见Chevalley[7]，Borel[2]，或Humphrey[11]。下面是关于D空间上的代数问题。

3) 复齐性空间上的函数论

关于典型域上的函数论，见华罗庚[27]。最近，出版了Satake[20]的书。
我们参考了这本书，这本书中所引关于这个课题的文献是很全的。也可见许以超发表在中国科学和数学学报上的关于 Siegel 域的一系列工作。另一方面，Shima 给出了一系列的论文，研究了齐性空间的 Kaehler 几何的实翻版，见

4) Lie 群的酉表示

对紧群，我们有 Bott-Kostant 定理，它是用 C 空间上的某个上同调，对 Borel-Weil 定理所作的推广，见 Warner [26]，第一卷。

对非紧半单 Lie 群的酉表示的详细表述见 Sugiura [22], Wallach [24], G. Warner [26]，也见下面论文。

5) 齐性空间上的调和分析

这个课题和酉表示论密切相关。见[24], [26]。

近年来发展起来的课题是关于谱问题，即 Riemann 齐性空间上的 Laplace 算子的特征值问题。一般的介绍见

关于决定 Riemann 齐性空间的谱等的文章，见

6) 离散子群及局部对称 Riemann 空间的某些上同调

• 183 •
关于 Lie 群的离散子群理论见 Raghunathan [19] 及 Mostow [17]。

关于局部对称 Riemann 空间的某些上同调群，首先出现在离散子群的刚性问题的研究中。后来，在 Matsushima-Murakami 的文章中，展开了一般理论，特别是在局部对称 Hermite 空间的情形得到了一些有意义的结果。这方面入门的介绍，见

S. Murakami, Cohomology groups of vector-valued forms on symmetric spaces, Lecture Notes, University of Chicago 1966.

下面文章的参考文献中几乎包括了这方面理论的全部论文。

F. Williams, Vanishing theorem of type (0, q) cohomology of locally symmetric spaces, Osaka J. Math. 18 (1981), 147~160.

关于上同调群的许多进一步的课题，也可见 Borel-Wallach [3].
参考文献

• 165 •
[19] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag

[20] I. Satake, Algebraic structures of symmetric domains, Publication of the
Math. Soc. of Japan 14, Iwanami-shoten, Toky and Princeton Univ. Press,

1966.

[22] M. Sugiuira, Unitary representations and harmonic analysis—an introductio

[23] V. S. Varadarajan, Lie groups, Lie algebras, and their representations,

[26] G. Warner, Harmonic analysis on semi-simple Lie groups I, II, Springer-

注意:

现在这本书所需要的预备知识，关于微分几何及 Lie 群，见 Chevalley [6],
Matsushima[16] 或者 F. W. Warner[25] 第 1, 2, 3 章; 关于 Lie 代数，见 Humphrey
[10] 或者 Serre[21]。

为了详细地了解 Lie 群，可以参考 Hochschild [9], Pontryagin [18], Varadar-
ajan[23]; 了解 Lie 代数，可以参考 Bourbaki [4], Jacobson [12].

关于对称空间，可看 Helgason [8], Kobayashi-Nomizu [13] 第 2 册, Koszul
[15], Boothy-Weiss [1], 严志达和许以超[28].

参考书目中提到的其他书，与本文讲义最后的注记有关。
THEORY OF HOMOGENEOUS SPACES

Summary

The present book is based on notes that the author has prepared for a series of lectures on complex homogeneous spaces given at Nankai University, Tianjin, China in autumn 1980. It consists of six chapters, the content of which we shall now summarize briefly.

Chapter 1. Preliminaries. This is an introductory chapter on Lie groups, homogeneous spaces and Riemannian manifolds. Assuming that the reader has some knowledge on these subjects, we recall without proofs basic concepts and results which will be used throughout the book.

Chapter 2. Symmetric Riemannian spaces. In the first half, we discuss elementary properties of symmetric Riemannian spaces and examples of them. Then, after a review of the relationship which exists between complex and real semi-simple Lie algebras, we present the structure theory of symmetric Riemannian spaces, and finally get the classification of irreducible symmetric Riemannian spaces.

Chapter 3. Symmetric Hermitian spaces. We introduce first important results on complex homogeneous manifolds, which will be applied in the rest of the book. Then symmetric Hermitian spaces are discussed and classified.

Chapter 4. Compact homogeneous complex manifolds. First we recall the structure theory of complex semi-simple Lie algebras, and discuss properties of parabolic subgroups of a complex Lie group. We prove then a structure theorem (due to J. Tits) on compact complex homogeneous manifolds: Such a manifold is a fibre space over a D-space whose fibre is a compact complex parallelizable manifold (a D-space is the quotient of a complex Lie group by a parabolic subgroup). We derive from this a theorem of E. C. Wang asserting that a compact simply connected complex homogeneous manifold can be represented as the quotient of a compact semi-simple Lie group by a C-subgroup.
Chapter 5. Homogeneous Kähler manifolds. A theorem of A. Borel on the structure of compact homogeneous Kähler manifolds is proved. Then we examine existence of invariant complex and Kähler structures on the quotient space of a semi-simple Lie group by a compact subgroup which is the centralizer of a torus. We prove in particular the counterpart of the theorem of H. C. Wang cited above, and also the theorem of A. Borel and J. L. Koszul to the effect that a homogeneous bounded domain in \mathbb{C} acted transitively by a semi-simple Lie group is necessarily a symmetric domain.

Chapter 6. Homogeneous vector bundles and induced representations. This chapter begins with a brief introduction to holomorphic fibre bundles, principal bundles, vector bundles associated to principal bundles, and holomorphic projective imbeddings of complex manifolds by means of line bundles over them. Then, by analysing the projective imbeddings of a D-space defined by homogeneous line bundles over it, we prove among others the following theorem of Borel-Weil: Any irreducible representation of a complex semi-simple Lie group is induced from a one-dimensional representation of a Borel subgroup.

The bibliography at the end contains a list of books on Theory of Lie groups and homogeneous spaces which may be useful for the reader's further study.